Citation: | LIN Sanbao, XIA Yunhao, DONG Bolun, CAI Xiaoyu, FAN Chenglei. Microstructure and properties of dual-wire arc additive manufacturing of Al-Mg-Zn-Cu-Sc alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 36-42. DOI: 10.12073/j.hjxb.20220710001 |
王建国, 王祝堂. 航空航天变形铝合金的进展(3)[J]. 轻合金加工技术, 2013, 41(10): 1 − 14. doi: 10.13979/j.1007-7235.2013.10.020
Wang Jianguo, Wang Zhutang. Advancement in aerospace wrought aluminium alloys(3)[J]. Light Alloy Fabrication Technology, 2013, 41(10): 1 − 14. doi: 10.13979/j.1007-7235.2013.10.020
|
Li Xiaoping, Liu Xiao, Li Runzhou, et al. Micrcstructure and property research on welded joints of 7XXX alumium alloy welding wire TIG for 7075 aluminum alloy[J]. China Welding, 2021, 30(4): 58 − 64.
|
Zuo H, Li H, Qi L, et al. Influence of interfacial bonding between metal droplets on tensile properties of 7075 aluminum billets by additive manufacturing technique[J]. Journal of Materials Science & Technology, 2016, 32: 485 − 488.
|
Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918 − 926. doi: 10.1016/j.phpro.2016.08.096
|
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminum alloys[J]. Nature, 2017, 549: 365 − 369. doi: 10.1038/nature23894
|
Dong B L, Cai X Y, Lin S, et al. Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: Microstructures and mechanical properties[J]. Additive Manufacturing, 2020, 36: 101447. doi: 10.1016/j.addma.2020.101447
|
Shao-Lu L, Pan Q, Chen X. Effect of Sc and Ti additions on microstructures and tensile properties of Al-Mg alloys[J]. Ordnance Material Science and Engineering, 2003, 01: 11 − 15.
|
Milman Y V, Sirko A I, Lotsko D V, et al. Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc[C]/Trans Tech Publications, Cambridge, 2002: 1217 − 1222.
|
Zhu Z, Ng F L, Hang L S, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation[J]. Materials Today, 2022, 52: 90 − 101. doi: 10.1016/j.mattod.2021.11.019
|
Wang Z, Lin X, Kang N, et al. Making selective-laser-melted high-strength Al–Mg–Sc–Zr alloy tough via ultrafine and heterogeneous microstructure[J]. Scripta Materialia, 2021, 203(1-2): 114052.
|
潘伟. 原位强化的梯度钛合金电弧增材制造工艺及组织性能研究[D]. 兰州: 兰州理工大学, 2019.
Wei P. Study on microstructure and properties of in-situ reinforced gradient titanium alloy by arc additive manufacturing[D]. Lanzhou: Lanzhou University of Technology, 2019.
|
Bermingham M J, Kent D, Zhan H, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions[J]. Acta Materialia, 2015, 91: 289 − 303. doi: 10.1016/j.actamat.2015.03.035
|
Yu Z, Yuan T, Xu M, et al. Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy fabricated by wire + arc additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 62: 430 − 439. doi: 10.1016/j.jmapro.2020.12.045
|
何杰, 冯曰海, 张林, 等. 高强Al-Mg合金钨极氩弧双丝增材制造工艺与组织性能[J]. 焊接学报, 2019, 40(7): 109 − 113. doi: 10.12073/j.hjxb.2019400191
He J, Feng Y H, Zhang L et al. Research on microstructure and mechanical properties of high strength Al-Mg alloy fabricated by double-wire and gas tungsten arc additive manufacturing process[J]. Transactions of the China Welding Institution, 2019, 40(7): 109 − 113. doi: 10.12073/j.hjxb.2019400191
|
Cai X Y, Dong B L, Yin X L, et al. Wire arc additive manufacturing of titanium aluminide alloys using two-wire TOP-TIG welding: Processing, microstructures, and mechanical properties[J]. Additive Manufacturing, 2020, 35: 101344.
|
Li T X, Wang Z J, Zhen W Y, et al. Fabrication and characterization of stainless steel 308 L/Inconel 625 functionally graded material with continuous change in composition by dual-wire arc additive manufacturing[J]. Journal of Alloys and Compounds, 2022: 165398.
|