Citation: | CAI Xiaoyu, DONG Bolun, WANG Junzhe, LIN Sanbao. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 7-12. DOI: 10.12073/j.hjxb.20210921002 |
Nochovnaya N A, Panin P V, Kochetkov A S, et al. Modern refractory alloys based on titanium gamma-aluminide: Prospects of development and application[J]. Metal Science and Heat Treatment, 2014, 56(7-8): 364 − 367. doi: 10.1007/s11041-014-9763-4
|
Zhu H L, Maruyama K, Seo D Y, et al. Interfacial strengthening by soft phase in lamellar microstructure of TiAl alloys[J]. Applied Physics Letters, 2007, 90: 171925. doi: 10.1063/1.2733600
|
王林, 沈忱, 张弛, 等. 增材制造TiAl合金的研究现状及展望[J]. 电焊机, 2020, 50(4): 1 − 12, 136.
Wang Lin, Shen Chen, Zhang Chi, et al. Research progress and prospects of TiAl alloy produced by additive manufacturing technology[J]. Electric Welding Machine, 2020, 50(4): 1 − 12, 136.
|
Bolz S, Oehring M, Lindemann J, et al. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions[J]. Intermetallics, 2015, 58: 71 − 83. doi: 10.1016/j.intermet.2014.11.008
|
Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1 − 16. doi: 10.1016/j.paerosci.2012.04.001
|
Wu X. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10): 1114 − 1122.
|
Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
|
张帅锋, 吕逸帆, 魏正英, 等. 基于CMT 的电弧熔丝增材Ti-6Al-3Nb-2Zr-1Mo 合金的组织与性能[J]. 焊接学报, 2021, 42(2): 56 − 62. doi: 10.12073/j.hjxb.20200804003
Zhang Shuaifeng, Lv Yifan, Wei Zhengying, et al. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(2): 56 − 62. doi: 10.12073/j.hjxb.20200804003
|
蔡笑宇, 董博伦, 殷宪铼, 等. 预热温度对GTA增材制造钛铝合金组织及性能的影响[J]. 焊接学报, 2021, 42(10): 14 − 21.
Cai Xiaoyu, Dong bolun, Yin Xianlai, et al. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. Transactions of the China Welding Institution, 2021, 42(10): 14 − 21.
|
Cai X Y, Dong B L, Yin X L. Wire arc additive manufacturing of titanium aluminide alloys using two-wire TOP-TIG welding: Processing, microstructures, and mechanical properties[J]. Additive Manufacturing, 2020, 35: 101344. doi: 10.1016/j.addma.2020.101344
|
Ma Y, Cuiuri D, Li H J, et al. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process[J]. Materials Science and Engineering:A, 2016, 657: 86 − 95. doi: 10.1016/j.msea.2016.01.060
|
Wang J, Pan Z, Wei L, et al. Introduction of ternary alloying element in wire arc additive manufacturing of titanium aluminide intermetallic[J]. Additive Manufacturing, 2019, 27: 236 − 245. doi: 10.1016/j.addma.2019.03.014
|
彭超群, 黄伯云, 贺跃辉. 热处理对TiAl基合金相变和显微组织的影响[J]. 材料科学与工艺, 2002, 10(3): 331 − 336. doi: 10.3969/j.issn.1005-0299.2002.03.025
Peng Chaoqun, Huang Baiyun, He Yuehui. Effects of heat treatment on phase transformation and microstructure of TiAl-based alloys[J]. Materials Science and Technology, 2002, 10(3): 331 − 336. doi: 10.3969/j.issn.1005-0299.2002.03.025
|