Citation: | ZHENG Wenjian, LI Zhengyang, WANG Xinghua, GONG Xuhui, YAN Dejun, LAI Shaobo, YANG Jianguo. Effect of heat conduction mode on microstructure and properties of 800 MPa class marine high strength steel fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 38-46. DOI: 10.12073/j.hjxb.20230605004 |
In order to study the effect of heat conduction mode on the microstructure and properties of 800 MPa class marine high strength steel additive components, 800 MPa class marine high strength steel components were deposited by wire arc additive manufacturing (WAAM) technology under different processes, and microstructure characterization and mechanical properties testing of components were carried out. When deposited along the height direction, the bottom microstructure of the component is mainly acicular ferrite and martensite, the middle and top microstructures are massive and acicular ferrite + granular bainite. The yield strengths in the horizontal and vertical directions are 708 MPa and 652 MPa, the tensile strength are 895 MPa and 831 MPa , and the impact absorbed energy at −60 ℃ is 66 J and 86 J, respectively. When deposited along the transverse direction, the microstructure of the component is fine acicular ferrite and lath martensite, the yield strength and tensile strength reach 929 MPa and 1020 MPa respectively, and the impact absorbed energy at −60 ℃ is 92 J. The results indicate that the mechanical properties of the 800 MPa class marine high strength steel WAAM component are highly sensitive to the heat conduction mode, and optimizing heat conduction process can significantly improve its comprehensive mechanical properties.
[1] |
郝文魁, 刘智勇, 王显宗, 等. 舰艇用高强钢强度及其耐蚀性现状及发展趋势[J]. 装备环境工程, 2014, 11(1): 54 − 62.
Hao Wenkui, Liu Zhiyong, Wang Xianzong, et al. Present situation and prospect of studies on high strength steel and corrosion resistance in naval ship and submarine[J]. Equipment Environmental Engineering, 2014, 11(1): 54 − 62.
|
[2] |
Layus P, Kah P, Khlusova E, et al. Study of the sensitivity of high-strength cold-resistant shipbuilding steels to thermal cycle of arc welding[J]. International Journal of Mechanical and Materials Engineering, 2018, 13(1): 1 − 9. doi: 10.1186/s40712-017-0087-1
|
[3] |
王顺, 李晨骁, 汪骥, 等. 考虑挠度的船用高强度钢曲板线加热成形数值计算研究[J]. 中国造船, 2021, 62(4): 230 − 243.
Wang Shun, Li Chenxiao, Wang Ji, et al. Numerical calculation of line heating forming of marine high strength steel bending plate considering deflection[J]. Shipbuilding of China, 2021, 62(4): 230 − 243.
|
[4] |
邵军. 舰船用钢研究现状与发展[J]. 鞍钢技术, 2013(4): 1 − 4. doi: 10.3969/j.issn.1006-4613.2013.04.001
Shao Jun. Present status on researching shipbuilding steel and its development[J]. Angang Technology, 2013(4): 1 − 4. doi: 10.3969/j.issn.1006-4613.2013.04.001
|
[5] |
雷冰, 胡胜楠, 卢云飞, 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术[J]. 腐蚀与防护, 2019, 40(7): 497 − 501,518.
Lei Bing, Hu Shengnan, Lu Yunfei, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship[J]. Corrosion & Protection, 2019, 40(7): 497 − 501,518.
|
[6] |
Greer C, Nycz A, Noakes M, et al. Introduction to the design rules for metal big area additive manufacturing[J]. Additive Manufacturing, 2019, 27: 159 − 166. doi: 10.1016/j.addma.2019.02.016
|
[7] |
Buchanan C, Gardner L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges[J]. Engineering Structures, 2019, 180: 332 − 348. doi: 10.1016/j.engstruct.2018.11.045
|
[8] |
Ding Donghong, Shen Chen, Pan Zengxi, et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part[J]. Computer-Aided Design, 2016, 73: 66 − 75. doi: 10.1016/j.cad.2015.12.003
|
[9] |
Song Xueping, Huang Jiankang, Fan Ding. Review of functionally graded materials processed by additive manufacturing[J]. China Welding, 2023, 32(3): 41 − 50.
|
[10] |
郭纯, 马明亮, 胡瑞章, 等. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(S2): 455 − 459.
Guo Chun, Ma Mingliang, Hu Ruizhang, et al. Microstructure and properties of 10CrNi3MoV high strength steel for naval ship made by wire and arc additive manufacturing[J]. Materials Reports, 2019, 33(S2): 455 − 459.
|
[11] |
Rodrigues T A, Duarte V, Avila J A, et al. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties[J]. Additive Manufacturing, 2019, 27: 440 − 450. doi: 10.1016/j.addma.2019.03.029
|
[12] |
侯旭儒, 赵琳, 任淑彬, 等. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J/OL]. 金属学报: 1-19[2023-05-10]. http://kns.cnki.net/kcms/detail/21.1139.tg.20230314.1749.092.html.
Hou Xuru, Zhao Lin, Ren Shubin, et al. Effect of heat input on microstructure and mechanical properties of marine high strength steel fabricated by wire arc additive manufacturing[J/OL]. Acta Metallurgica Sinica: 1-19[2023-05-10]. http://kns.cnki.net/kcms/detail/21.1139.tg.20230314.1749.092.html.
|
[13] |
方学伟, 蒋笑, 王喆, 等. ER120S-G高强钢电弧增材制造的工艺优化[J]. 中国机械工程, 2023, 34(2): 218 − 225.
Fang Xuewei, Jiang Xiao, Wang Zhe, et al. Forming process optimization of wire and arc additive manufactured high-strength steel ER120S-G[J]. China Mechanical Engineering, 2023, 34(2): 218 − 225.
|
[14] |
Li Xueda, Fan Yuran, Ma Xiaoping, et al. Influence of Martensite-Austenite constituents formed at different intercritical temperatures on toughness[J]. Materials & Design, 2015, 67: 457 − 463.
|
[15] |
李大用, 杨东青, 王苹, 等. 高铬镍奥氏体焊丝焊接10Ni5CrMoV钢接头组织性能分析[J]. 焊接学报, 2017, 38(5): 87 − 91.
Li Dayong, Yang Dongqing, Wang Ping, et al. Analysis on microstructure and properties of under-matching weld joint of high strength steel 10Ni5CrMoV[J]. Transactions of the China Welding Institution, 2017, 38(5): 87 − 91.
|
[16] |
刘露, 王加友, 李大用, 等. 10Ni5CrMoV钢错位同步双面双弧焊接接头抗低温脆断性能[J]. 焊接学报, 2016, 37(8): 109 − 113.
Liu Lu, Wang Jiayou, Li Dayong, et al. Low temperature brittle fracture resistance of asymmetrical synchronous double-sided arc welded joint of 10Ni5CrMoV steel[J]. Transactions of the China Welding Institution, 2016, 37(8): 109 − 113.
|
[17] |
撒世勇. 10CrNi5MoV钢厚板窄间隙熔化极气保焊研究[J]. 材料开发与应用, 2010, 25(1): 13 − 15.
Sa Shiyong. Narrow gap metal arc gas welding of 10CrNi5MoV steel thick plate[J]. Development and Application of Materials, 2010, 25(1): 13 − 15.
|
[18] |
陆万全, 乔及森, 王磊, 等. 960高强钢脉冲TIG电弧增材制造热过程与组织性能研究[J/OL]. 材料导报, 2023, 37(14): 1-14[2023-05-10]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220526.1958.020.html.
Lu Wanquan, Qiao Jisen, Wang Lei, et al. Study on thermal process, microstructure and mechanical properties of thin-walled components during pulsed current wire arc additive manufacturing of 960 high-strength steel[J/OL]. Materials Reports, 2023, 37(14): 1-14[2023-05-10]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220526.1958.020.html.
|
[19] |
Fang Qian, Zhao Lin, Chen Cuixin, et al. Effect of heat input on microstructural and mechanical properties of high strength low alloy steel block parts fabricated by wire arc additive manufacturing[J]. Materials Today Communications, 2023, 34: 105146. doi: 10.1016/j.mtcomm.2022.105146
|
[20] |
余圣甫, 禹润缜, 何天英, 等. 电弧增材制造技术及其应用的研究进展[J]. 中国材料进展, 2021, 40(3): 198 − 209.
Yu Shengfu, Yu Runzhen, He Tianying, et al. Wire arc additive manufacturing and its application: Research progress[J]. Materials China, 2021, 40(3): 198 − 209.
|
[21] |
安同邦, 郑庆, 张永林, 等. 1300 MPa级低合金高强钢SH-CCT曲线及冷裂敏感性分析[J]. 焊接学报, 2022, 43(9): 75 − 81.
An Tongbang, Zheng Qing, Zhang Yonglin, et al. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. Transactions of the China Welding Institution, 2022, 43(9): 75 − 81.
|