Citation: | SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002 |
Using plasma arc as heat source, the additive manufacturing of titanium alloy fuses layer by layer was carried out by AC assisted method. The influence of AC value on the microstructure and properties of the additive specimen was studied. The influence of the auxiliary AC value on the droplet size and droplet transition was observed by high-speed photography, the roughness of the stack morphology was measured, the structure and microhardness of the stack were observed, and the influence of the auxiliary AC value on the compression performance of the stack was analyzed. The results show that a more obvious AC arc will be formed and the plasma arc will swing, which will oscillate the molten pool. The surface roughness and grain size of the additive specimen are improved, and the grain size decreases with the increase of the applied auxiliary AC. When no AC is added to the AC value of 30 A, the grain size is reduced by 43.4%. At the same time, the addition of auxiliary AC can significantly improve the hardness and plasticity of the additive specimen. When the external auxiliary AC is 30 A, the hardness is 454.15 HV, and the compression strain is 0.280%. Without AC, the hardness is 406.45 HV and the compressive strain is 0.110%, which is increased by 2.5 times.
[1] |
Zhang B, Yang T, Huang M, et al. Design of uniform nano α precipitates in a pre-deformed β-Ti alloy with high mechanical performance[J]. Journal of Materials Research and Technology, 2019, 8(1): 777 − 787. doi: 10.1016/j.jmrt.2018.06.006
|
[2] |
Liu Y, Ding Y, Yang L, et al. Research and progress of laser cladding on engineering alloys: A review[J]. Journal of Manufacturing Processes, 2021, 66: 341 − 363. doi: 10.1016/j.jmapro.2021.03.061
|
[3] |
Lin J, Lyu Y, Liu Y, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 19 − 29. doi: 10.1016/j.jmbbm.2016.12.015
|
[4] |
杨海欧, 王健, 周颖惠, 等. 电弧增材制造技术及其在Ti-6Al-4V钛合金中的应用研究进展[J]. 材料导报, 2018, 32(11): 1884 − 1890. doi: 10.11896/j.issn.1005-023X.2018.11.016
Yang Haiou, Wang Jian, Zhou Yinghui, et al. Research progress of arc additive manufacturing technology and its application in Ti-6Al-4V titanium alloy[J]. Materials Reports, 2018, 32(11): 1884 − 1890. doi: 10.11896/j.issn.1005-023X.2018.11.016
|
[5] |
常坤, 梁恩泉, 张韧, 等. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176 − 3182. doi: 10.11896/cldb.19100153
Chang Kun, Liang Enquan, Zhang Ren, et al. Research status of metal material additive manufacturing and its application in the field of civil aviation[J]. Materials Reports, 2021, 35(3): 3176 − 3182. doi: 10.11896/cldb.19100153
|
[6] |
徐俊强, 彭勇, 刘智慧, 等. 等离子弧异质异构增材制造构件的组织与力学性能分析[J]. 焊接学报, 2019, 40(11): 119 − 124,166. doi: 10.12073/j.hjxb.2019400298
Xu Junqiang, Peng Yong, Liu Zhihui, et al. Analysis of microstructure and mechanical properties of plasma-arc heterogeneous additive components[J]. Transactions of the China Welding Institution, 2019, 40(11): 119 − 124,166. doi: 10.12073/j.hjxb.2019400298
|
[7] |
潘子钦, 张海鸥, 王桂兰, 等. 等离子弧熔丝增材制造Ti-6Al-4V-DT钛合金组织与疲劳断裂行为[J]. 特种铸造及有色合金, 2012, 42(9): 1154 − 1159.
Pan Ziqin, Zhang Haiou, Wang Guilan, et al. Microstructure and fatigue fracture behavior of Ti-6Al-4V-DT titanium alloy fabricated by plasma arc fuse additive[J]. Special Casting and Non-ferrous Alloys, 2012, 42(9): 1154 − 1159.
|
[8] |
Ji F, Qin X, Hu Z, et al. Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105789. doi: 10.1016/j.icheatmasstransfer.2021.105789
|
[9] |
Zeng L, Xu M, Ma X, et al. Grain refinement and delta ferrite reduction of high Cr steel ingots by thermal control[J]. ISIJ International, 2014, 54(10): 2302 − 2308. doi: 10.2355/isijinternational.54.2302
|
[10] |
Zhang X, Wu S, Xiao R, et al. Homogenisation of chemical composition and microstructure in laser filler wire welding of AA 6009 aluminium alloy by in situ electric current stirring[J]. Science and Technology of Welding and Joining, 2016, 21(3): 157 − 163. doi: 10.1179/1362171815Y.0000000077
|
[11] |
杨光, 赵恩迪, 钦兰云, 等. 电磁搅拌对激光熔池熔体流速及其凝固组织影响研究[J]. 红外与激光工程, 2017, 46(9): 48 − 55.
Yang Guang, Zhao Endi, Qin Lanyun, et al. Study on the influence of electromagnetic stirring on the melt flow rate and solidification structure of laser molten pool[J]. Infrared and Laser Engineering, 2017, 46(9): 48 − 55.
|
[12] |
Sabzi M, Anijdan S H M, Eivani A R, et al. The effect of pulse current changes in PCGTAW on microstructural evolution, drastic improvement in mechanical properties, and fracture mode of dissimilar welded joint of AISI 316L-AISI 310S stainless steels[J]. Materials Science & Engineering: A, 2021, 823: 1 − 13.
|
[13] |
Wang X, Fan D, Huang J, et al. Numerical simulation of arc plasma and weld pool in double electrodes tungsten inert gas welding[J]. International Journal of Heat and Mass Transfer, 2015, 85: 924 − 934. doi: 10.1016/j.ijheatmasstransfer.2015.01.132
|
[14] |
Huang J, Liu G, Yu X, et al. Microstructure regulation of titanium alloy functionally gradient materials fabricated by alternating current assisted wire arc additive manufacturing[J]. Materials & Design, 2022, 218: 1 − 14.
|
[15] |
李雷, 于治水, 张培磊, 等. Ti-6Al-4V钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12): 37 − 43. doi: 10.12073/j.hjxb.2018390294
Li Lei, Yu Zhishui, Zhang Peilei, et al. Microstructure characteristics of Ti-6Al-4V titanium alloy by arc additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(12): 37 − 43. doi: 10.12073/j.hjxb.2018390294
|
[16] |
Huang J, Huang Y, Yu X, et al. Corrosion characterization of Ti-6Al-4V coating layer by the alternating current assisted GTAW method[J]. Corrosion Science, 2022, 197: 1 − 11.
|
[17] |
Xu K, Xue Y, Zhang Z, et al. The effect of heat treatment on α/β phases evolution of Ti-6Al-4V titanium alloy fabricated by spark plasma sintering[J]. Procedia Manufacturing, 2020, 50: 713 − 718. doi: 10.1016/j.promfg.2020.08.128
|
1. |
吴勇,孟施旭,孙清云,陈辉,夏思瑶,杨甫,夏春怀,杨汉哲. Inconel625与Inconel601合金耐高温氯离子腐蚀性能及机理的比较研究. 金属热处理. 2023(09): 208-213 .
![]() | |
2. |
郭枭,谷宇,韩莹,徐锴,王岩,姜英龙. Inconel 625合金堆焊金属开裂机理研究. 焊接学报. 2023(11): 117-123+135-136 .
![]() |