Citation: | CAI Xiaoyu, DONG Bolun, YIN Xianlai, LIN Sanbao, FAN Chenglei. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 14-21. DOI: 10.12073/j.hjxb.20201002001 |
Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
|
张帅锋, 吕逸帆, 魏正英, 等. 基于CMT的电弧熔丝增材Ti-6Al-3Nb-2Zr-1Mo合金的组织与性能[J]. 焊接学报, 2021, 42(2): 56 − 62.
Zhang Shuaifeng, Lv Yifan, Wei Zhengying, et al. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(2): 56 − 62.
|
贾志宏, 万晓慧, 郭德伦. 超高频电弧增材制造GH4169合金热处理组织[J]. 焊接学报, 2019, 40(12): 154 − 160.
Jia Zhihong, Wan Xiaohui, Guo Delun. Study on heat-treated microstructure of GH4169 superalloy deposited by UHFP-GTAW[J]. Transactions of the China Welding Institution, 2019, 40(12): 154 − 160.
|
Bai J Y, Yang C L, Lin S B, et al. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. International Journal of Advanced Manufacturing Technology, 2015, 86: 479 − 485.
|
Shen C, Pan Z X, Cuiuri D, et al. Influences of postproduction heat treatment on Fe3Al-based iron aluminide fabricated using the wire-arc additive manufacturing process[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(1-4): 335 − 344. doi: 10.1007/s00170-018-1954-5
|
Dong B S, Pan Z X, Shen C, et al. Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process[J]. Metallurgical and Materials Transactions B, 2017, 48(6): 3143 − 3151. doi: 10.1007/s11663-017-1071-0
|
李健. Ni-Al金属间化合物的电弧增材制造技术基础研究[D]. 武汉: 华中科技大学, 2018.
Li Jian. Fundamental study on wire and arc additive manufacturing of Ni-Al intermetallic compounds[D]. Wuhan: Huazhong University of Science and Technology, 2018.
|
Nochovnaya N A, Panin P V, Kochetkov A S, et al. Modern refractory alloys based on titanium gamma-aluminide: Prospects of development and application[J]. Metal Science and Heat Treatment, 2014, 56(7−8): 364 − 367. doi: 10.1007/s11041-014-9763-4
|
Zhu H L, Maruyama K, Seo D Y, et al. Interfacial strengthening by soft phase in lamellar microstructure of TiAl alloys[J]. Applied Physics Letters, 2007, 90: 171925. doi: 10.1063/1.2733600
|
Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1 − 16. doi: 10.1016/j.paerosci.2012.04.001
|
Wu X. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10): 1114 − 1122.
|
Qu H P, Li P, Zhang S Q, et al. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys[J]. Materials & Design, 2010, 31(4): 2201 − 2210.
|
Qu H P, Li P, Zhang S Q, et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material[J]. Materials & Design, 2010, 31(1): 574 − 582.
|
Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties[J]. Journal of Alloys and Compounds, 2016, 688: 626 − 636. doi: 10.1016/j.jallcom.2016.07.206
|
Murr L E, Gaytan S M, Ceylan A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia, 2010, 58(5): 1887 − 1894. doi: 10.1016/j.actamat.2009.11.032
|
Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting[J]. Journal of Alloys and Compounds, 2018, 776: 450 − 459.
|
Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding[J]. Materials Science and Engineering: A, 2015, 631: 230 − 240. doi: 10.1016/j.msea.2015.02.051
|
Ma Y, Cuiuri D, Shen C, et al. Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding[J]. Additive Manufacturing, 2015, 8: 71 − 77. doi: 10.1016/j.addma.2015.08.001
|
Ma Y, Cuiuri D, Li H J, et al. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process[J]. Materials Sciense and Engineening: A, 2016, 657: 86 − 95. doi: 10.1016/j.msea.2016.01.060
|
Cai X Y, Dong B L, Yin X L. Wire arc additive manufacturing of titanium aluminide alloys using two-wire TOP-TIG welding: Processing, microstructures, and mechanical properties[J]. Additive Manufacturing, 2020, 35: 101344. doi: 10.1016/j.addma.2020.101344
|
汪小平, 郑运荣. TiAl基合金中的不连续粗化转变[J]. 材料工程, 2000, 7: 20 − 23. doi: 10.3969/j.issn.1001-4381.2000.01.005
Wang Xiaoping, Zheng Yunrong. Discontinuous coarsening transformations in TiAl based alloys[J]. Journal of Materials Engineering, 2000, 7: 20 − 23. doi: 10.3969/j.issn.1001-4381.2000.01.005
|
方璐. 全片层高Nb-TiAl合金显微组织热稳定性研究[D]. 北京: 北京科技大学, 2017.
Fang Lu. Investigation on the thermal stabilities of microstructure in fully lamellar high Nb containing TiAl alloys[D]. Beijing: University of Science and Technology Beijing, 2017.
|
[1] | YAO Xingzhong, LI Huijun, YANG Zhenwen, WANG Ying. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 12-19. DOI: 10.12073/j.hjxb.20230422001 |
[2] | WANG Xiaowei, ZHANG Bin, ZENG Ruchuan, YAN Zhaoyang, CHEN Shujun. Microstructure and mechanical properties of welds at keyhole closures in variable-polarity plasma arc welding of Al alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 1-6. DOI: 10.12073/j.hjxb.20230402001 |
[3] | WU Kai, BU Zhixiang, KUANG Xiaocao, WEI Ligeng, WANG Lishi. Effect of the additional water-cooling on the microstructure and mechanical properties of wire arc additive manufacturing of 4047 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 127-132. DOI: 10.12073/j.hjxb.20221121002 |
[4] | SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002 |
[5] | CAI Xiaoyu, DONG Bolun, WANG Junzhe, LIN Sanbao. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 7-12. DOI: 10.12073/j.hjxb.20210921002 |
[6] | XU Lianyong, PANG Hongning, ZHAO Lei, HAN Yongdian, CHI Dazhao. Microstructure and mechanical properties of CMT + P welding process on G115 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 1-5. DOI: 10.12073/j.hjxb.20200208002 |
[7] | WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002 |
[8] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[9] | QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8. |
[10] | WANG Chunyan, QU Wenqing, YAO Junshan, ZHAO Haiyun. Microstructures and mechanical properties of friction stir welded 2219-T87 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 77-80,84. |
1. |
李麒,朱光平. 基于SWT和SVR的重力坝变形预测研究. 人民长江. 2021(11): 169-174 .
![]() | |
2. |
左曙光,潘健,吴旭东,冯朝阳. 考虑动圈偏心的电动振动台等效电磁力计算方法. 西安交通大学学报. 2020(08): 132-139 .
![]() | |
3. |
叶建雄,彭星玲,李兵. 水下湿法焊接研究进展. 电焊机. 2020(09): 111-117 .
![]() |