Advanced Search
CAI Xiaoyu, DONG Bolun, YIN Xianlai, LIN Sanbao, FAN Chenglei. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 14-21. DOI: 10.12073/j.hjxb.20201002001
Citation: CAI Xiaoyu, DONG Bolun, YIN Xianlai, LIN Sanbao, FAN Chenglei. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 14-21. DOI: 10.12073/j.hjxb.20201002001

Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy

More Information
  • Received Date: October 01, 2020
  • Available Online: November 15, 2021
  • High-temperature structural material TiAl based alloy has poor machinability. It is challenging to fabricate complex structures. And the processing cost is relatively high. GTA arc additive manufacturing is a promising technology to synthesis TiAl based alloy in situ with increased flexibility and low cost. However, crack control is still essential during fabrication. Preheating is effective in avoiding cracking during additive manufacturing. In this work, the Ti6Al4V and ER1100 wires are used as feedstock to fabricate TiAl based alloy in situ with an aluminum content of 50 at%. Preheating temperatures of 200, 300, 450 ℃ are used to investigate the influences on the microstructures and mechanical properties of the fabricated specimen. Results show that, with the preheating temperature increasing, more bulk γ phases precipitate on the boundaries of γ/α2 lamellar clusters in the top and middle region of the specimen, while the influences on the microstructures at the bottom are not significant. The proportion of α2 decreases with the preheating temperature, leading to a diminishing hardness. At the same time, the percentage of bulk-like γ phases increases, which results in the promotion of compressive properties. When the preheating temperature is set at 450 ℃, the fabricated specimen shows the highest compressive strength and compression ratio.
  • Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
    张帅锋, 吕逸帆, 魏正英, 等. 基于CMT的电弧熔丝增材Ti-6Al-3Nb-2Zr-1Mo合金的组织与性能[J]. 焊接学报, 2021, 42(2): 56 − 62.

    Zhang Shuaifeng, Lv Yifan, Wei Zhengying, et al. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(2): 56 − 62.
    贾志宏, 万晓慧, 郭德伦. 超高频电弧增材制造GH4169合金热处理组织[J]. 焊接学报, 2019, 40(12): 154 − 160.

    Jia Zhihong, Wan Xiaohui, Guo Delun. Study on heat-treated microstructure of GH4169 superalloy deposited by UHFP-GTAW[J]. Transactions of the China Welding Institution, 2019, 40(12): 154 − 160.
    Bai J Y, Yang C L, Lin S B, et al. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. International Journal of Advanced Manufacturing Technology, 2015, 86: 479 − 485.
    Shen C, Pan Z X, Cuiuri D, et al. Influences of postproduction heat treatment on Fe3Al-based iron aluminide fabricated using the wire-arc additive manufacturing process[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(1-4): 335 − 344. doi: 10.1007/s00170-018-1954-5
    Dong B S, Pan Z X, Shen C, et al. Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process[J]. Metallurgical and Materials Transactions B, 2017, 48(6): 3143 − 3151. doi: 10.1007/s11663-017-1071-0
    李健. Ni-Al金属间化合物的电弧增材制造技术基础研究[D]. 武汉: 华中科技大学, 2018.

    Li Jian. Fundamental study on wire and arc additive manufacturing of Ni-Al intermetallic compounds[D]. Wuhan: Huazhong University of Science and Technology, 2018.
    Nochovnaya N A, Panin P V, Kochetkov A S, et al. Modern refractory alloys based on titanium gamma-aluminide: Prospects of development and application[J]. Metal Science and Heat Treatment, 2014, 56(7−8): 364 − 367. doi: 10.1007/s11041-014-9763-4
    Zhu H L, Maruyama K, Seo D Y, et al. Interfacial strengthening by soft phase in lamellar microstructure of TiAl alloys[J]. Applied Physics Letters, 2007, 90: 171925. doi: 10.1063/1.2733600
    Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1 − 16. doi: 10.1016/j.paerosci.2012.04.001
    Wu X. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14(10): 1114 − 1122.
    Qu H P, Li P, Zhang S Q, et al. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys[J]. Materials & Design, 2010, 31(4): 2201 − 2210.
    Qu H P, Li P, Zhang S Q, et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material[J]. Materials & Design, 2010, 31(1): 574 − 582.
    Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties[J]. Journal of Alloys and Compounds, 2016, 688: 626 − 636. doi: 10.1016/j.jallcom.2016.07.206
    Murr L E, Gaytan S M, Ceylan A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia, 2010, 58(5): 1887 − 1894. doi: 10.1016/j.actamat.2009.11.032
    Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting[J]. Journal of Alloys and Compounds, 2018, 776: 450 − 459.
    Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding[J]. Materials Science and Engineering: A, 2015, 631: 230 − 240. doi: 10.1016/j.msea.2015.02.051
    Ma Y, Cuiuri D, Shen C, et al. Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding[J]. Additive Manufacturing, 2015, 8: 71 − 77. doi: 10.1016/j.addma.2015.08.001
    Ma Y, Cuiuri D, Li H J, et al. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process[J]. Materials Sciense and Engineening: A, 2016, 657: 86 − 95. doi: 10.1016/j.msea.2016.01.060
    Cai X Y, Dong B L, Yin X L. Wire arc additive manufacturing of titanium aluminide alloys using two-wire TOP-TIG welding: Processing, microstructures, and mechanical properties[J]. Additive Manufacturing, 2020, 35: 101344. doi: 10.1016/j.addma.2020.101344
    汪小平, 郑运荣. TiAl基合金中的不连续粗化转变[J]. 材料工程, 2000, 7: 20 − 23. doi: 10.3969/j.issn.1001-4381.2000.01.005

    Wang Xiaoping, Zheng Yunrong. Discontinuous coarsening transformations in TiAl based alloys[J]. Journal of Materials Engineering, 2000, 7: 20 − 23. doi: 10.3969/j.issn.1001-4381.2000.01.005
    方璐. 全片层高Nb-TiAl合金显微组织热稳定性研究[D]. 北京: 北京科技大学, 2017.

    Fang Lu. Investigation on the thermal stabilities of microstructure in fully lamellar high Nb containing TiAl alloys[D]. Beijing: University of Science and Technology Beijing, 2017.
  • Related Articles

    [1]YAO Xingzhong, LI Huijun, YANG Zhenwen, WANG Ying. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 12-19. DOI: 10.12073/j.hjxb.20230422001
    [2]WANG Xiaowei, ZHANG Bin, ZENG Ruchuan, YAN Zhaoyang, CHEN Shujun. Microstructure and mechanical properties of welds at keyhole closures in variable-polarity plasma arc welding of Al alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 1-6. DOI: 10.12073/j.hjxb.20230402001
    [3]WU Kai, BU Zhixiang, KUANG Xiaocao, WEI Ligeng, WANG Lishi. Effect of the additional water-cooling on the microstructure and mechanical properties of wire arc additive manufacturing of 4047 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 127-132. DOI: 10.12073/j.hjxb.20221121002
    [4]SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002
    [5]CAI Xiaoyu, DONG Bolun, WANG Junzhe, LIN Sanbao. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 7-12. DOI: 10.12073/j.hjxb.20210921002
    [6]XU Lianyong, PANG Hongning, ZHAO Lei, HAN Yongdian, CHI Dazhao. Microstructure and mechanical properties of CMT + P welding process on G115 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 1-5. DOI: 10.12073/j.hjxb.20200208002
    [7]WANG Hu, JIN Likun, PENG Yun. Microstructure and mechanical properties of joints of a new Al-Mg-Mn-Er alloy by TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 74-79. DOI: 10.12073/j.hjxb.20190924002
    [8]ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076
    [9]QIAO Jisen, YU Jiangrui, GOU Ningnian, YUAN Xiaoer. Development of microstructure influence on mechanical properties of fusion welding joints of aluminium alloy 2A12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 5-8.
    [10]WANG Chunyan, QU Wenqing, YAO Junshan, ZHAO Haiyun. Microstructures and mechanical properties of friction stir welded 2219-T87 aluminum alloy joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 77-80,84.
  • Cited by

    Periodical cited type(3)

    1. 李麒,朱光平. 基于SWT和SVR的重力坝变形预测研究. 人民长江. 2021(11): 169-174 .
    2. 左曙光,潘健,吴旭东,冯朝阳. 考虑动圈偏心的电动振动台等效电磁力计算方法. 西安交通大学学报. 2020(08): 132-139 .
    3. 叶建雄,彭星玲,李兵. 水下湿法焊接研究进展. 电焊机. 2020(09): 111-117 .

    Other cited types(5)

Catalog

    Article views (428) PDF downloads (56) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return