Advanced Search
YAO Xingzhong, LI Huijun, YANG Zhenwen, WANG Ying. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 12-19. DOI: 10.12073/j.hjxb.20230422001
Citation: YAO Xingzhong, LI Huijun, YANG Zhenwen, WANG Ying. Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 12-19. DOI: 10.12073/j.hjxb.20230422001

Tailoring the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy by trace TiC powder addition

More Information
  • Received Date: April 21, 2023
  • Available Online: June 03, 2024
  • In-situ alloying has been demonstrated to be an effective method for modifying the microstructure of additively manufactured titanium alloys. In this paper, the influence of trace TiC powder addition on the microstructure and mechanical properties of wire arc additive manufactured Ti-6Al-4V alloy was investigated. The result showed that the trace TiC powder addition reduced the size of columnar β grains and refined the α-Ti phase in the Ti-6Al-4V alloy, and the microstructure was the fine basketweave structure, and the ultimate tensile strength and elongation reached 1029 MPa and 14.8%, which increased by 12.8% and 26.5%, respectively, synergistically improving the strength and ductility of wire arc additive manufactured Ti-6Al-4V alloy. Meanwhile, the microhardness of the deposited alloy was increased to 362.9HV, which was an increase of 11.4%. As analyzed by EBSD, the addition of TiC powder decreased the texture intensity and increased the orientation of the α-Ti phase. The improvement in mechanical properties of the Ti-6Al-4V alloy after adding trace TiC powder was mainly attributed to fine-grain strengthening and solid solution strengthening, where fine-grain strengthening was the main strengthening mechanism. Comparative analysis of the fracture of the tensile specimens of the two deposited alloys showed that the fracture morphology of Ti-6Al-4V alloy exhibited the mixed plastic-brittle fracture, while the fracture morphology exhibited a typical plastic fracture with a mass fraction of 0.5% TiC powder. The potential of TiC powder as a grain refiner for the wire arc additive manufactured Ti-6Al-4V alloys was demonstrated.

  • [1]
    Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61(3): 844 − 879. doi: 10.1016/j.actamat.2012.10.043
    [2]
    Barriobero-Vila P, Gussone J, Stark A, et al. Peritectic titanium alloys for 3D printing[J]. Nature Communications, 2018, 9: 3426. doi: 10.1038/s41467-018-05819-9
    [3]
    Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309 − 320. doi: 10.1016/j.actamat.2014.12.054
    [4]
    Kim Y, Song Y B, Lee S H. Microstructure and intermediate-temperature mechanical properties of powder metallurgy Ti-6Al-4V alloy prepared by the prealloyed approach[J]. Journal of Alloys and Compounds, 2015, 637: 234 − 241. doi: 10.1016/j.jallcom.2015.03.019
    [5]
    Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44: 968 − 977. doi: 10.1007/s11661-012-1444-6
    [6]
    Zhuo Y M, Yang C L, Fan C L, et al. Grain refinement of wire arc additive manufactured titanium alloy by the combined method of boron addition and low frequency pulse arc[J]. Materials Science and Engineering A, 2021, 805: 140557. doi: 10.1016/j.msea.2020.140557
    [7]
    Wang J, Lin X, Wang J T, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018, 768: 97 − 113. doi: 10.1016/j.jallcom.2018.07.235
    [8]
    Lin X, Yue T M, Yang H O, et al. Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy[J]. Metallurgical and Materials Transactions A, 2007, 38: 127 − 137. doi: 10.1007/s11661-006-9021-5
    [9]
    Zhuo Y M, Yang C L, Fan C L, et al. Effects of trace Sn and Cr addition on microstructure and mechanical properties of TC17 titanium alloy repaired by wire arc additive manufacturing[J]. Journal of Alloys and Compounds, 2021, 888: 161473. doi: 10.1016/j.jallcom.2021.161473
    [10]
    Zhang F Y, Yang M, Clare A T, et al. Microstructure and mechanical properties of Ti-2Al alloyed with Mo formed in laser additive manufacture[J]. Journal of Alloys and Compounds, 2017, 727: 821 − 831. doi: 10.1016/j.jallcom.2017.07.324
    [11]
    Bermingham M J, Kent D, Zhan H, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti-06Al-4V with trace boron additions[J]. Acta Materialia, 2015, 91: 289 − 303. doi: 10.1016/j.actamat.2015.03.035
    [12]
    Mereddy S, Bermingham M J, Kent D, et al. Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti-6Al-4V[J]. Journal of the Minerals, Metals & Materials Society, 2018, 70: 1670 − 1676.
    [13]
    Mereddy S, Bermingham M J, Stjohn D H, et al. Grain refinement of wire arc additively manufactured titanium by the addition of silicon[J]. Journal of Alloys and Compounds, 2017, 695: 2097 − 2103. doi: 10.1016/j.jallcom.2016.11.049
    [14]
    Li S P, Wang X Y, Wei Z C, et al. Simultaneously improving the strength and ductility of the as-sintered (TiB + La2O3)/Ti composites by in-situ planting ultra-fine networks into the composite powder[J]. Scripta Materialia, 2022, 218: 114835. doi: 10.1016/j.scriptamat.2022.114835
    [15]
    Zhang W J, Song X Y, Hui S X, et al. Tensile behavior at 700 ℃ in Ti-Al-Sn-Zr-Mo-Nb-W-Si alloy with a bi-modal microstructure[J]. Materials Science and Engineering A, 2014, 595: 159 − 164. doi: 10.1016/j.msea.2013.11.096
    [16]
    Kok Y, Pan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review[J]. Materials & Design, 2018, 139: 565 − 586.
  • Related Articles

    [1]TIAN Rui, JIANG Zhe, LIU Jun, LIU Weiqing, CHI Yuanqing, ZHANG Yongkang. Formability, microstructure and mechanical properties of nano-treated Al-Zn-Mg-Cu alloy fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 110-120. DOI: 10.12073/j.hjxb.20231216001
    [2]WU Kai, BU Zhixiang, KUANG Xiaocao, WEI Ligeng, WANG Lishi. Effect of the additional water-cooling on the microstructure and mechanical properties of wire arc additive manufacturing of 4047 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 127-132. DOI: 10.12073/j.hjxb.20221121002
    [3]WU Tao, TAN Zhen, WANG Liwei, LIANG Zhimin, WANG Dianlong. Microstructure and mechanical properties of Al-Mg-Cu alloy fabricated by heterogeneous twin-wire indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 64-70. DOI: 10.12073/j.hjxb.20230305003
    [4]SHEN Lei, HUANG Jiankang, LIU Guangyin, YU Shurong, FAN Ding, SONG Min. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 57-63. DOI: 10.12073/j.hjxb.20220918002
    [5]LIN Sanbao, XIA Yunhao, DONG Bolun, CAI Xiaoyu, FAN Chenglei. Microstructure and properties of dual-wire arc additive manufacturing of Al-Mg-Zn-Cu-Sc alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 36-42. DOI: 10.12073/j.hjxb.20220710001
    [6]HAO Tingting, LI Chengde, WANG Xu, ZHAI Yuchun, CHANG Yunlong. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 49-56. DOI: 10.12073/j.hjxb.20220416001
    [7]CAI Xiaoyu, DONG Bolun, WANG Junzhe, LIN Sanbao. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 7-12. DOI: 10.12073/j.hjxb.20210921002
    [8]HE Peng, BAI Xingwang, ZHOU Xiangman, ZHANG Haiou. Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 50-54, 60. DOI: 10.12073/j.hjxb.20210608001
    [9]ZHANG Shuaifeng, LV Yifan, WEI Zhengying, JIANG Peng, PENG Hui, CUI Yongjie. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 56-62. DOI: 10.12073/j.hjxb.20200804003
    [10]XU Guojian, LIU Jin, CHEN Dongsa, MA Ruixin, SU Yunhai. Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 39-43. DOI: 10.12073/j.hjxb.20191022002
  • Cited by

    Periodical cited type(1)

    1. 董逸君,王勇刚,李东亚,朱珊珊,许淑红,王瑶. 激光熔覆碳化物增强镍基涂层组织与性能的热处理调控. 焊接学报. 2024(10): 59-68 . 本站查看

    Other cited types(0)

Catalog

    Article views (182) PDF downloads (50) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return