Citation: | ZHANG Shuaifeng, LV Yifan, WEI Zhengying, JIANG Peng, PENG Hui, CUI Yongjie. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 56-62. DOI: 10.12073/j.hjxb.20200804003 |
卢秉恒, 李涤尘. 增材制造(3D 打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001
Lu Bingheng, Li Dichen. Development of the additive manufacturing(3D printing) technology[J]. Machine Building and Automation, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001
|
陈国庆, 树西, 张秉刚. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214
Chen Guoqing, Shu Xi, Zhang Binggang. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214
|
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.
Wang Huaming. Materials’ fundamental issues of laseradditive manufacturing for high-performance large metalliccomponents[J]. Chinese Journal of Aeronautics, 2014, 35(10): 2690 − 2698.
|
Li N, Huang S, Zhang G D, et al. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science and Technology, 2019, 35: 242 − 269. doi: 10.1016/j.jmst.2018.09.002
|
王哲, 张钧, 李述军, 等. 电子束熔化逐层成形法制备Ti6Al4V合金的组织与力学性能[J]. 中国有色金属学报, 2013, 23(z1): s20 − s23.
Wang Zhe, Zhang Jun, Li Shujun, et al. Microstructures and mechanical properties ofTi6Al4Valloy fabricated by electron beam melting[J]. The Chinese Journalof Nonferrous Metals, 2013, 23(z1): s20 − s23.
|
Lawrence E Murr, Sara M Gaytan, Diana A Ramirez, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science and Technology, 2012, 28: 1 − 14.
|
Zhao X, Li S, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting[J]. Materials and Design, 2016, 95: 21 − 31. doi: 10.1016/j.matdes.2015.12.135
|
Brandl E, Palm F, Michailov V. Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire[J]. Materials and Design, 2011, 32(10): 4665 − 4675. doi: 10.1016/j.matdes.2011.06.062
|
Tan X, Kok Y, Yu J T, et al. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V[J]. Journal of Alloys & Compounds, 2015, 646: 303 − 309.
|
Qiu C L, Ravi G A, Moataz M A. Microstructural control during direct laser deposition of a β-titanium alloy[J]. Materials and Design, 2015, 81(9): 21 − 30.
|
Suo H B, Chen Z Y, Liu J R. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing[J]. Rare Metal Materials and Engineering, 2014, 43(4): 0780 − 0785. doi: 10.1016/S1875-5372(14)60083-7
|
田银宝, 申俊琦, 胡绳荪, 等. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55: 1407 − 1416. doi: 10.11900/0412.1961.2019.00022
Tian Yinbao, Shen Junqi, Hu Shengsun, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing[J]. Acta Metallurgica Sinica, 2019, 55: 1407 − 1416. doi: 10.11900/0412.1961.2019.00022
|
Xiong J, Li R, Lei Y Y, et al. Heat propagation of circular thinwalled parts fabricated in additive manufacturing using gas metal arc welding[J]. Journal of Materials Processing Technology, 2018, 251: 12 − 19. doi: 10.1016/j.jmatprotec.2017.08.007
|
Horgar A, Fostervoll H, Nyhus, B, et al. Additive manufacturing using WAAM with AA5183 wire[J]. Journal of Materials Processing Technology, 2018, 259: 68 − 74. doi: 10.1016/j.jmatprotec.2018.04.014
|
Haden C V, Zeng G, Carter III F M, et al. Wire and arc additive manufactured steel: tensile and wear properties[J]. Additive Manufacturing, 2017, 16: 115 − 123. doi: 10.1016/j.addma.2017.05.010
|
Wu B T, Ding D H, Pan Z X, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V[J]. Journal of Materials Processing Technology, 2017, 250: 304 − 312. doi: 10.1016/j.jmatprotec.2017.07.037
|
Davis A E, Breheny C I, Fellowes J, et al. Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacture[J]. Materials Science & Engineering A, 2019, 765: 138289.
|
Xie Y, Ming G, Wang F D. Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V[J]. Materials Science and Engineering A, 2018, 709: 265 − 269. doi: 10.1016/j.msea.2017.10.064
|
Xie C J, Yang S L, Liu H B, et al. Microstructure and mechanical properties of robot cold metal transfer Al5.5Zn2.5Mg2.2Cu aluminium alloy joints[J]. Journal of Materials Processing Technology, 2018, 255: 507 − 515. doi: 10.1016/j.jmatprotec.2017.12.045
|
Cong B Q, Ouyang R J, Qi B J, et al. Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds[J]. Rare Metal Materials and Engineering, 2016, 45(3): 606 − 611. doi: 10.1016/S1875-5372(16)30080-7
|
Gu J L, Ding J L, Williams S W, et al. The effect of inter-layercold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. Journal of Materials Processing Technology, 2016, 230: 26 − 34. doi: 10.1016/j.jmatprotec.2015.11.006
|
Gu J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Materials Science and Engineering A, 2016, A651: 18 − 26.
|
Zhang C, Li Y F, Gao M, et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source[J]. Materials Science and Engineering A, 2018, 711: 415 − 423. doi: 10.1016/j.msea.2017.11.084
|
周长平, 林枫, 杨浩, 等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017, 39(2): 80 − 87.
Zhou Changping, Lin Feng, Yang Hao, et al. Application progress of additive manufacturing technology in shipbuilding field[J]. Ship Engineering, 2017, 39(2): 80 − 87.
|
吴笑风, 岳宏, 石瑶, 等. 我国船舶产业智能制造及其标准化现状与趋势[J]. 舰船科学技术, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001
Wu Xiaofeng, Yue Hong, Shi Yao, et al. Current status and development trend of smart manufacturing technology and standardization of China’s shipbuilding industry[J]. Ship Science and Technology, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001
|
Tian Y B, Shen J Q, Hu S S, et al. Effects of ultrasonic vibration in the CMT process on welded joints of Al alloy[J]. Journal of Materials Processing Technology, 2018, 259: 282 − 291. doi: 10.1016/j.jmatprotec.2018.05.004
|
Chen M A, Zhang D, Wu C S. Current waveform effects on CMT welding of mild steel[J]. Journal of Materials Processing Technology, 2017, 243: 395 − 404. doi: 10.1016/j.jmatprotec.2017.01.004
|
Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 − 977. doi: 10.1007/s11661-012-1444-6
|
Lin J J, Lü Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing[J]. Materials and Design, 2016, 102: 30 − 40. doi: 10.1016/j.matdes.2016.04.018
|
Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 2019, 168: 261 − 274. doi: 10.1016/j.actamat.2019.02.020
|
崔忠圻, 谭耀春. 金属学与热处理. 北京: 机械工业出版社, 2011.
Cui Zhongqi, Tan Yaochun. Metallography & heat treatment[M]. Beijing: Chemical Industry Press, 2011.
|
Bermingham M J, Kent D, Zhan H, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions[J]. Acta Materialia, 2015, 91: 289 − 303. doi: 10.1016/j.actamat.2015.03.035
|
Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communication, 2020, 11(1): 142 − 151. doi: 10.1038/s41467-019-13874-z
|
帅三三, 林鑫, 肖武泉, 等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 90 − 98.
Shuai Sansan, Lin Xin, Xiao Wuquan, et al. Effect of transverse static magnetic field on microstructure of Al-12%Si alloys fabricated by powder-blow additive manufacturing[J]. Acta Metallurgica Sinica, 2018, 54(6): 90 − 98.
|
Wei K W, Wang Z M, Zeng X Y. Effect of heat treatment on microstructure and mechanical properties of the selective laser melting processed Ti-5Al-2.5Sn α titanium alloy[J]. Materials Science and Engineering A, 2018, 709: 301 − 311. doi: 10.1016/j.msea.2017.10.061
|
Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review[J]. Materials and Design, 2018, 139: 565 − 586. doi: 10.1016/j.matdes.2017.11.021
|
Leuders S, Thone M, Riemer A, et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48: 300 − 307. doi: 10.1016/j.ijfatigue.2012.11.011
|
Rafi H K, Karthik N V, Gong H, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 3872 − 3883. doi: 10.1007/s11665-013-0658-0
|
邵晖, 赵永庆, 葛鹏, 等. 不同组织类型对TC21 合金强-塑性的影响[J]. 稀有金属材料与工程, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039
Shao Hui, Zhao Yongqing, Ge Peng, et al. Effects of different microstructure types on the strength and plasticity of TC21 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039
|
[1] | REN Xianghui, MA Teng, WU Wei, HAN Shanguo. Microstructure and properties of 316L stainless steel parts fabricated by double wire CMT + P additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 96-103. DOI: 10.12073/j.hjxb.20231207001 |
[2] | LI Mingchuan, MA Rui, CHANG Shuai, WANG Qishun, LI Liqun. Microstructure evolution and anisotropy of nickel-based superalloy fabricated by LPBF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 34-40, 47. DOI: 10.12073/j.hjxb.20231108002 |
[3] | HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002 |
[4] | GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001 |
[5] | WANG Lei, LI He, HUANG Yong, WANG Kehong, ZHOU Qi. Phase field investigation on solidification cracking susceptibility in the molten pool under different anisotropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 83-86. DOI: 10.12073/j.hjxb.20210309001 |
[6] | RAN Teng, FAN Tao, DU Fei, ZHAI Xiang, YANG Donghua, HUANG Fuxiang. First-principles study on anisotropy of elastic modulus of α-CoSn3 IMC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 71-76. DOI: 10.12073/j.hjxb.20201209004 |
[7] | ZHANG Shuaifeng, JIANG Peng, YU Bingbing, GONG Shuili, YANG Guang. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273 |
[8] | WANG Xiaoguang, LIU Fencheng, FANG Ping, WU Shifeng. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 100-106. DOI: 10.12073/j.hjxb.2019400135 |
[9] | CHEN Zhenhua, ZHANG Chong, LU Chao, YANG Xiangjie. Application and analysis on wave propagation in ultrasonic TOFD test of austenitic stainless steel weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 91-95. |
[10] | ZHOU Qinglin, QIAO Jisen, CHEN Jianhong, ZHU Liang. Mechanical properties of CO2-laser and TIG aluminium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 63-66. |
1. |
郭鹰,杨尚玉,周聪,朱雷. 氢对TIP-TIG焊接LNG储罐用9Ni钢接头低温韧性的影响. 电焊机. 2025(04): 113-121 .
![]() | |
2. |
杨朝刚,杨凯,陈家兑,黄海松. 不同钨极锥角下微TIG点焊电弧行为分析. 焊接. 2024(01): 1-9 .
![]() | |
3. |
梁明明,刘晓文,侯昊,陈佳铭,牛连山,姜艳朋. 焊枪喷嘴结构对保护气体流场的影响. 油气储运. 2024(04): 449-456 .
![]() | |
4. |
杨宽,高辉,周灿丰. 基于Fluent的窄间隙TIG焊枪结构优化设计. 焊接. 2022(08): 39-43 .
![]() | |
5. |
王新鑫,迟露鑫,许惠斌,樊丁. 双TIG电弧中氧传质行为的数值分析. 机械工程学报. 2021(04): 53-62 .
![]() | |
6. |
赵金涛,岳建锋,谢昶,刘文吉,刘海华. Q235与304L异种钢角焊缝GTAW电弧能量分配规律研究. 材料科学与工艺. 2021(06): 27-34 .
![]() | |
7. |
郭朝博,崔露露,陶凯,王会敏. 基基于多多物理场场耦合的的TIG焊焊电弧数数值模模拟研究究. 河南工学院学报. 2020(01): 60-64 .
![]() | |
8. |
范成磊,陈超,林三宝,杨春利,狄忠举. TIG焊接参数对全息干涉条纹的影响. 焊接学报. 2020(02): 1-5+97 .
![]() | |
9. |
黑增杰,万阳,叶正山. 混合气体保护脉冲TIG工艺在UHVDC阀冷管道预制的应用. 机械制造文摘(焊接分册). 2020(03): 36-40 .
![]() |