Advanced Search
ZHANG Shuaifeng, LV Yifan, WEI Zhengying, JIANG Peng, PENG Hui, CUI Yongjie. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 56-62. DOI: 10.12073/j.hjxb.20200804003
Citation: ZHANG Shuaifeng, LV Yifan, WEI Zhengying, JIANG Peng, PENG Hui, CUI Yongjie. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 56-62. DOI: 10.12073/j.hjxb.20200804003

Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing

More Information
  • Received Date: August 03, 2020
  • Available Online: April 07, 2021
  • The microstructure, mechanical properties and anisotropy of Ti-6Al-3Nb-2Zr-1Mo alloy made by CMT-Wire Arc additive manufacturing(CMT-WAAM) were studied. The as-built microstructures exhibit irregular polygons prior β and grain boundary α. This technology can refine the grains, and no columnar prior β grain morphology is observed. No martensite phase was discovered. The tensile strength in both directions have reached the standard requirements of the same level forging. No obvious texture is observed, and the anisotropy in tensile behavior is not obvious. There is no obvious texture and anisotropy in the manufactured structure. The ductility in transverse specimens was limited by the presence of lack-of-fusion porosity. The impact toughness of x and z direction is not less than 65 J. The impact fracture is typical ductile fracture,which consists of a large number of dimples.
  • 卢秉恒, 李涤尘. 增材制造(3D 打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    Lu Bingheng, Li Dichen. Development of the additive manufacturing(3D printing) technology[J]. Machine Building and Automation, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001
    陈国庆, 树西, 张秉刚. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214

    Chen Guoqing, Shu Xi, Zhang Binggang. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128. doi: 10.12073/j.hjxb.2018390214
    王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Materials’ fundamental issues of laseradditive manufacturing for high-performance large metalliccomponents[J]. Chinese Journal of Aeronautics, 2014, 35(10): 2690 − 2698.
    Li N, Huang S, Zhang G D, et al. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science and Technology, 2019, 35: 242 − 269. doi: 10.1016/j.jmst.2018.09.002
    王哲, 张钧, 李述军, 等. 电子束熔化逐层成形法制备Ti6Al4V合金的组织与力学性能[J]. 中国有色金属学报, 2013, 23(z1): s20 − s23.

    Wang Zhe, Zhang Jun, Li Shujun, et al. Microstructures and mechanical properties ofTi6Al4Valloy fabricated by electron beam melting[J]. The Chinese Journalof Nonferrous Metals, 2013, 23(z1): s20 − s23.
    Lawrence E Murr, Sara M Gaytan, Diana A Ramirez, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science and Technology, 2012, 28: 1 − 14.
    Zhao X, Li S, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting[J]. Materials and Design, 2016, 95: 21 − 31. doi: 10.1016/j.matdes.2015.12.135
    Brandl E, Palm F, Michailov V. Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire[J]. Materials and Design, 2011, 32(10): 4665 − 4675. doi: 10.1016/j.matdes.2011.06.062
    Tan X, Kok Y, Yu J T, et al. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V[J]. Journal of Alloys & Compounds, 2015, 646: 303 − 309.
    Qiu C L, Ravi G A, Moataz M A. Microstructural control during direct laser deposition of a β-titanium alloy[J]. Materials and Design, 2015, 81(9): 21 − 30.
    Suo H B, Chen Z Y, Liu J R. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing[J]. Rare Metal Materials and Engineering, 2014, 43(4): 0780 − 0785. doi: 10.1016/S1875-5372(14)60083-7
    田银宝, 申俊琦, 胡绳荪, 等. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55: 1407 − 1416. doi: 10.11900/0412.1961.2019.00022

    Tian Yinbao, Shen Junqi, Hu Shengsun, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing[J]. Acta Metallurgica Sinica, 2019, 55: 1407 − 1416. doi: 10.11900/0412.1961.2019.00022
    Xiong J, Li R, Lei Y Y, et al. Heat propagation of circular thinwalled parts fabricated in additive manufacturing using gas metal arc welding[J]. Journal of Materials Processing Technology, 2018, 251: 12 − 19. doi: 10.1016/j.jmatprotec.2017.08.007
    Horgar A, Fostervoll H, Nyhus, B, et al. Additive manufacturing using WAAM with AA5183 wire[J]. Journal of Materials Processing Technology, 2018, 259: 68 − 74. doi: 10.1016/j.jmatprotec.2018.04.014
    Haden C V, Zeng G, Carter III F M, et al. Wire and arc additive manufactured steel: tensile and wear properties[J]. Additive Manufacturing, 2017, 16: 115 − 123. doi: 10.1016/j.addma.2017.05.010
    Wu B T, Ding D H, Pan Z X, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V[J]. Journal of Materials Processing Technology, 2017, 250: 304 − 312. doi: 10.1016/j.jmatprotec.2017.07.037
    Davis A E, Breheny C I, Fellowes J, et al. Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacture[J]. Materials Science & Engineering A, 2019, 765: 138289.
    Xie Y, Ming G, Wang F D. Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V[J]. Materials Science and Engineering A, 2018, 709: 265 − 269. doi: 10.1016/j.msea.2017.10.064
    Xie C J, Yang S L, Liu H B, et al. Microstructure and mechanical properties of robot cold metal transfer Al5.5Zn2.5Mg2.2Cu aluminium alloy joints[J]. Journal of Materials Processing Technology, 2018, 255: 507 − 515. doi: 10.1016/j.jmatprotec.2017.12.045
    Cong B Q, Ouyang R J, Qi B J, et al. Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds[J]. Rare Metal Materials and Engineering, 2016, 45(3): 606 − 611. doi: 10.1016/S1875-5372(16)30080-7
    Gu J L, Ding J L, Williams S W, et al. The effect of inter-layercold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. Journal of Materials Processing Technology, 2016, 230: 26 − 34. doi: 10.1016/j.jmatprotec.2015.11.006
    Gu J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Materials Science and Engineering A, 2016, A651: 18 − 26.
    Zhang C, Li Y F, Gao M, et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source[J]. Materials Science and Engineering A, 2018, 711: 415 − 423. doi: 10.1016/j.msea.2017.11.084
    周长平, 林枫, 杨浩, 等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017, 39(2): 80 − 87.

    Zhou Changping, Lin Feng, Yang Hao, et al. Application progress of additive manufacturing technology in shipbuilding field[J]. Ship Engineering, 2017, 39(2): 80 − 87.
    吴笑风, 岳宏, 石瑶, 等. 我国船舶产业智能制造及其标准化现状与趋势[J]. 舰船科学技术, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001

    Wu Xiaofeng, Yue Hong, Shi Yao, et al. Current status and development trend of smart manufacturing technology and standardization of China’s shipbuilding industry[J]. Ship Science and Technology, 2016, 38(5): 1 − 6. doi: 10.3404/j.issn.1672-7619.2016.05.001
    Tian Y B, Shen J Q, Hu S S, et al. Effects of ultrasonic vibration in the CMT process on welded joints of Al alloy[J]. Journal of Materials Processing Technology, 2018, 259: 282 − 291. doi: 10.1016/j.jmatprotec.2018.05.004
    Chen M A, Zhang D, Wu C S. Current waveform effects on CMT welding of mild steel[J]. Journal of Materials Processing Technology, 2017, 243: 395 − 404. doi: 10.1016/j.jmatprotec.2017.01.004
    Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 − 977. doi: 10.1007/s11661-012-1444-6
    Lin J J, Lü Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing[J]. Materials and Design, 2016, 102: 30 − 40. doi: 10.1016/j.matdes.2016.04.018
    Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 2019, 168: 261 − 274. doi: 10.1016/j.actamat.2019.02.020
    崔忠圻, 谭耀春. 金属学与热处理. 北京: 机械工业出版社, 2011.

    Cui Zhongqi, Tan Yaochun. Metallography & heat treatment[M]. Beijing: Chemical Industry Press, 2011.
    Bermingham M J, Kent D, Zhan H, et al. Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions[J]. Acta Materialia, 2015, 91: 289 − 303. doi: 10.1016/j.actamat.2015.03.035
    Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communication, 2020, 11(1): 142 − 151. doi: 10.1038/s41467-019-13874-z
    帅三三, 林鑫, 肖武泉, 等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 90 − 98.

    Shuai Sansan, Lin Xin, Xiao Wuquan, et al. Effect of transverse static magnetic field on microstructure of Al-12%Si alloys fabricated by powder-blow additive manufacturing[J]. Acta Metallurgica Sinica, 2018, 54(6): 90 − 98.
    Wei K W, Wang Z M, Zeng X Y. Effect of heat treatment on microstructure and mechanical properties of the selective laser melting processed Ti-5Al-2.5Sn α titanium alloy[J]. Materials Science and Engineering A, 2018, 709: 301 − 311. doi: 10.1016/j.msea.2017.10.061
    Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review[J]. Materials and Design, 2018, 139: 565 − 586. doi: 10.1016/j.matdes.2017.11.021
    Leuders S, Thone M, Riemer A, et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48: 300 − 307. doi: 10.1016/j.ijfatigue.2012.11.011
    Rafi H K, Karthik N V, Gong H, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 3872 − 3883. doi: 10.1007/s11665-013-0658-0
    邵晖, 赵永庆, 葛鹏, 等. 不同组织类型对TC21 合金强-塑性的影响[J]. 稀有金属材料与工程, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039

    Shao Hui, Zhao Yongqing, Ge Peng, et al. Effects of different microstructure types on the strength and plasticity of TC21 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 845 − 848. doi: 10.3969/j.issn.1002-185X.2013.04.039
  • Related Articles

    [1]REN Xianghui, MA Teng, WU Wei, HAN Shanguo. Microstructure and properties of 316L stainless steel parts fabricated by double wire CMT + P additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 96-103. DOI: 10.12073/j.hjxb.20231207001
    [2]LI Mingchuan, MA Rui, CHANG Shuai, WANG Qishun, LI Liqun. Microstructure evolution and anisotropy of nickel-based superalloy fabricated by LPBF[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 34-40, 47. DOI: 10.12073/j.hjxb.20231108002
    [3]HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
    [4]GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001
    [5]WANG Lei, LI He, HUANG Yong, WANG Kehong, ZHOU Qi. Phase field investigation on solidification cracking susceptibility in the molten pool under different anisotropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 83-86. DOI: 10.12073/j.hjxb.20210309001
    [6]RAN Teng, FAN Tao, DU Fei, ZHAI Xiang, YANG Donghua, HUANG Fuxiang. First-principles study on anisotropy of elastic modulus of α-CoSn3 IMC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 71-76. DOI: 10.12073/j.hjxb.20201209004
    [7]ZHANG Shuaifeng, JIANG Peng, YU Bingbing, GONG Shuili, YANG Guang. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-Mo alloy fabricated by electron beam rapid manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 121-126, 155. DOI: 10.12073/j.hjxb.2019400273
    [8]WANG Xiaoguang, LIU Fencheng, FANG Ping, WU Shifeng. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 100-106. DOI: 10.12073/j.hjxb.2019400135
    [9]CHEN Zhenhua, ZHANG Chong, LU Chao, YANG Xiangjie. Application and analysis on wave propagation in ultrasonic TOFD test of austenitic stainless steel weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 91-95.
    [10]ZHOU Qinglin, QIAO Jisen, CHEN Jianhong, ZHU Liang. Mechanical properties of CO2-laser and TIG aluminium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 63-66.
  • Cited by

    Periodical cited type(9)

    1. 郭鹰,杨尚玉,周聪,朱雷. 氢对TIP-TIG焊接LNG储罐用9Ni钢接头低温韧性的影响. 电焊机. 2025(04): 113-121 .
    2. 杨朝刚,杨凯,陈家兑,黄海松. 不同钨极锥角下微TIG点焊电弧行为分析. 焊接. 2024(01): 1-9 .
    3. 梁明明,刘晓文,侯昊,陈佳铭,牛连山,姜艳朋. 焊枪喷嘴结构对保护气体流场的影响. 油气储运. 2024(04): 449-456 .
    4. 杨宽,高辉,周灿丰. 基于Fluent的窄间隙TIG焊枪结构优化设计. 焊接. 2022(08): 39-43 .
    5. 王新鑫,迟露鑫,许惠斌,樊丁. 双TIG电弧中氧传质行为的数值分析. 机械工程学报. 2021(04): 53-62 .
    6. 赵金涛,岳建锋,谢昶,刘文吉,刘海华. Q235与304L异种钢角焊缝GTAW电弧能量分配规律研究. 材料科学与工艺. 2021(06): 27-34 .
    7. 郭朝博,崔露露,陶凯,王会敏. 基基于多多物理场场耦合的的TIG焊焊电弧数数值模模拟研究究. 河南工学院学报. 2020(01): 60-64 .
    8. 范成磊,陈超,林三宝,杨春利,狄忠举. TIG焊接参数对全息干涉条纹的影响. 焊接学报. 2020(02): 1-5+97 . 本站查看
    9. 黑增杰,万阳,叶正山. 混合气体保护脉冲TIG工艺在UHVDC阀冷管道预制的应用. 机械制造文摘(焊接分册). 2020(03): 36-40 .

    Other cited types(4)

Catalog

    Article views (370) PDF downloads (36) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return