Advanced Search
WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001
Citation: WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240106001

Microstructure and corrosion behavior of selective laser melting Ti-6Al-4V alloy

More Information
  • Received Date: January 05, 2024
  • Available Online: March 27, 2025
  • To reveal the feasibility of applying selective laser melting (SLM) to titanium alloy underwater equipment components, this study investigated the corrosion resistance of SLM-prepared Ti64 alloy in a simulated seawater environment. The results showed that the SLM Ti64 alloy primarily consisted of needle-like α' martensite, with a β-phase content of approximately 0.3%. Comparative electrochemical tests revealed that in a 3.5 NaCl solutionIn a 3.5% NaCl solution by mass fraction, the open-circuit potential Eocp of SLM Ti64 alloy was −119.3 mV, significantly lower than the 234.12 mV for wroughted Ti64 alloy . Analysis of the potentiodynamic polarization curves using the extrapolation method showed that the corrosion potential Ecorr of SLM Ti64 alloy was −237.3 mV, also lower than the 118.4 mV for wroughted Ti64 alloy . Fitting the impedance spectra with an equivalent circuit model, the passive film resistance Rf and charge transfer resistance Rct of SLM Ti64 alloy were 184.1 kΩ·cm2and 2.76 × 105 MΩ·cm2, respectively, both lower than the 231 kΩ·cm2 and 4.26 × 105MΩ·cm2 for wroughted Ti64 alloy . Analysis of slow strain rate stress corrosion results at different strain rates showed that the stress corrosion susceptibility of SLM Ti64 alloy was 20.2%, 17.2%, and 14.4% at strain rates of 10−5 s−1, 5 × 10−6 s−1 and 10−6 s−1, respectively, all higher than −1.4%, 12.9%, and 10.8% for wroughted Ti64 alloy under the same conditions.

  • [1]
    沈磊, 黄健康, 刘光银, 等. 等离子弧 + 交流辅助电弧增材制造钛合金微观组织与性能[J]. 焊接学报, 2023, 44(10): 57 − 63. doi: 10.12073/j.hjxb.20220918002

    SHEN Lei, HUANG Jiankang, LIU Guangyin, et al. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. Transactions of the China Welding Institution, 2023, 44(10): 57 − 63. doi: 10.12073/j.hjxb.20220918002
    [2]
    DING H H, ZHANG J, LIU J Y, et al. Effect of volume energy density on microstructure and mechanical properties of TC4 alloy by selective laser melting[J]. Journal of Alloys and Compounds, 2023, 968: 171769.
    [3]
    DHIMAN S, CHINTHAPENTA V, BRANDT M, et al. Microstructure control in additively manufactured Ti-6Al-4V during high-power laser powder bed fusion[J]. Additive Manufacturing, 2024, 96: 104573.
    [4]
    DAI N W, ZHANG L C, ZHANG J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution[J]. Corrosion Science, 2016, 102: 484 − 489.
    [5]
    ZHANG J, YANG P Z, YANG H O, et al. Effect of heat treatment on microstructure and properties of hybrid manufacturing TC4 alloy bonding zone[J]. Journal of Materials Research and Technology, 2025, 34: 1108 − 1119.
    [6]
    CHENG H X, LUO H, CHENG J, et al. Optimizing the corrosion resistance of additive manufacturing TC4 titanium alloy in proton exchange membrane water electrolysis anodic environment[J]. International Journal of Hydrogen Energy, 2024, 93: 753 − 769.
    [7]
    DENG T S, ZHONG X Y, ZHONG M, et al. Effect of scandium on microstructure and corrosion resistance of Ti64 alloy in NaCl solution[J]. Materials Characterization, 2023, 197: 112671.
    [8]
    LIAN Z W, XIN S W, GUO P, et al. Synergistic effect of Cr and Fe elements on stress corrosion fracture toughness of titanium alloy[J]. Metals and Materials International, 2024, 31: 1087 − 1095.
    [9]
    BOWER K, MURRAY S, REINHART A, et al. Corrosion resistance of selective laser melted Ti–6Al–4V alloy in salt fog environment[J]. Results in Materials, 2020, 8: 100122. doi: 10.1016/j.rinma.2020.100122
    [10]
    王非凡, 谢聿铭, 吴会强, 等. 2219铝合金FSW和TIG焊接头力学与腐蚀行为[J]. 焊接学报, 2022, 43(6): 43 − 49. doi: 10.12073/j.hjxb.20220103001

    WANG Feifan, XIE Yuming, WU Huiqiang, et al. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 43 − 49. doi: 10.12073/j.hjxb.20220103001
    [11]
    MAHLOBO M G, CHIKOSHA L, OLUBAMBI P A. Study of the corrosion properties of powder rolled Ti-6Al-4V alloy applied in the biomedical implants[J]. Journal of Materials Research and Technology, 2022, 18: 3631 − 3639. doi: 10.1016/j.jmrt.2022.04.004
    [12]
    ZHOU X, XU D K, GENG S J, et al. Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition[J]. Materials Characterization, 2021, 179: 111302. doi: 10.1016/j.matchar.2021.111302
    [13]
    TAN B, CHEN W J, CAO T, et al. Effect of CeO2 content on the corrosion resistance of nanostructured Al2O3-10wt. %TiO2 ceramic coatings[J/OL]. China Welding, 2025, 33: http://chinawelding.hwi.com.cn/article/id/79102d41-4884-40db-922a-6d709e47ef22.
    [14]
    苏允海, 杨太森, 戴志勇, 等. Inconel 625熔敷金属抗Cl腐蚀行为分析[J]. 焊接学报, 2021, 42(6): 64 − 70.

    SU Yunhai, YANG Taisen, DAI Zhiyong, et al. Analysis of Cl corrosion resistance of Inconel 625 deposited metal[J]. Journal of Materials Research and Technology, 2021, 42(6): 64 − 70.
  • Related Articles

    [1]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003
    [2]HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
    [3]GUO Xiao, GU Yu, HAN Ying, XU Kai, WANG Yan, JIANG Yinglong. Study on cracking mechanism of Inconel 625 alloy surfacing metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 117-123. DOI: 10.12073/j.hjxb.20230403001
    [4]WANG Xujian, TAN Caiwang, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr /Inconel 625 laser welding joints on HEPS storage ring vacuum box[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 35-40. DOI: 10.12073/j.hjxb.20220204002
    [5]GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001
    [6]WANG Xujian, WANG Ting, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr/Inconel 625 joints by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 92-97. DOI: 10.12073/j.hjxb.20211215002
    [7]TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003
    [8]HE Shuai, WANG Lijun, GE Keke. Control of dilution rate of Inconel 625 alloy surfacing based on elman network algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 124-128.
    [9]LIANG Enbao, HU Shengsun, WANG Zhijiang. Optimization of GTAW cladding process of Inconel 625 on carbon steel using response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 85-88,108.
    [10]CHEN Jian-Jun, AN Zi-liang, SHI Jin, TU Shan-dong, WANG Zheng-dong. Experimental research and numerical simulation on creep behavior of brazed joint at high temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 39-43.
  • Cited by

    Periodical cited type(10)

    1. 张泽宇,闫梦喆,罗文睿,席鑫,路永新,林丹阳,宋晓国. GH3230合金选区激光熔化成形工艺对激光焊开裂的影响研究. 航天制造技术. 2024(03): 54-59 .
    2. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625等离子弧焊接头组织与性能研究. 稀有金属材料与工程. 2023(02): 559-567 .
    3. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625合金及焊缝在Na_2SO_4-NaCl熔盐中热腐蚀行为. 稀有金属材料与工程. 2023(05): 1842-1850 .
    4. 赵洋洋,林可欣,王颖,龚宝明. 基于位错模型的增材制造构件疲劳裂纹萌生行为. 焊接学报. 2023(07): 1-8+129 . 本站查看
    5. 朱杰,周庆军,陈晓晖,冯凯,李铸国. 铺粉厚度对选区激光熔化GH3625组织与力学性能的影响. 焊接学报. 2023(10): 12-17+133 . 本站查看
    6. 李战斌,徐兵,徐祥久,闫国斌. 镍基合金SB-444 N06625 Gr.2焊接工艺及接头性能. 机械制造文摘(焊接分册). 2022(03): 33-36 .
    7. 褚强,谢红,李文亚,杨夏炜,陈海燕,范文龙. 高温合金熔焊接头组织性能研究现状. 铸造技术. 2022(11): 955-963 .
    8. 褚清坤,余春风,邓朝阳,胡新广,闫星辰,胡永俊,刘敏. TiC含量对激光选区熔化Inconel 625合金微观组织及表面摩擦磨损性能的影响. 中国表面工程. 2021(01): 76-84 .
    9. 苏允海,杨太森,戴志勇,王英第,梁学伟,武兴刚. Inconel 625熔敷金属抗Cl~-腐蚀行为分析. 焊接学报. 2021(06): 64-70+100-101 . 本站查看
    10. 段江丽,刘禹. 复杂曲面堆焊Inconel625/925A焊接工艺与分析. 新技术新工艺. 2021(11): 15-19 .

    Other cited types(3)

Catalog

    Article views (6) PDF downloads (2) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return