Advanced Search
GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003
Citation: GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003

Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting

More Information
  • Received Date: November 27, 2023
  • Available Online: February 20, 2025
  • SLM is one of the key technologies for rapid manufacturing of high-performance high-entropy alloy components. However, in the SLM process, the multi-parameter manufacturing space directly affects the microstructure of the material, thereby influencing the performance of high-entropy alloys. This study explores the comprehensive relationship among the multi-parameter manufacturing space, density, microstructure, and microhardness of SLM-manufactured Al0.5CoCrFeNi bulk high-entropy alloy, providing theoretical references and a technical support for the SLM preparation of multi-parameter combination high-entropy alloys. The research results indicated that the optimal forming quality of the specimens was achieved with SLM process parameters of P = 100 W, v = 1500 mm/s, α = 67° and VED = 44.4 J/mm3, resulting in the lowest internal porosity, at 1.8%. Both lower and higher VED negatively impacted macroscopic forming quality. VED had a notable influence on phase distribution, grain morphology and average grain size. The SLM-manufactured Al0.5CoCrFeNi bulk high-entropy alloy consisted of FCC and BCC phases, with the FCC phase content increasing from 99.73% to 99.98% as VED increased. The columnar grains became predominant, with the average grain size initially increases and then decreases. Low-angle grain boundaries exhibited an initial increase followed by a decrease, while high-angle grain boundaries showed the opposite trend. The microhardness first decreased and then increased to 244.3 HV, This trend is consistent with the pattern of mean grain size variation with VED in accordance with the Hall-Petch relationship.

  • [1]
    Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 62: 214 − 220.
    [2]
    田权伟. Al-Co-Cr-Fe-Ni高熵合金系的显微组织和力学性能及其变形机理的研究[D]. 大连: 大连理工大学, 2021.

    Tian Quanwei. Microstructure, mechanical properties and deformation mechanisms of Al-Co-Cr-Fe-Ni system HEAs[D]. Dalian: Dalian University of Technology, 2021.
    [3]
    Guo L, Gu J, Gan B, et al. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N, Si) high entropy alloy[J]. Journal of Alloys and Compounds, 2021, 865: 158892. doi: 10.1016/j.jallcom.2021.158892
    [4]
    王永东, 宫书林, 汤明日, 等. 激光熔覆工艺对高熵合金组织与性能影响[J]. 焊接学报, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001

    Wang Yongdong, Gong Shulin, Tang Mingri, et al. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. Transactions of the China Welding Institution, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001
    [5]
    Wang X Q, Chou K. Electron backscatter diffraction analysis of Inconel 718 parts fabricated by selective laser melting[J]. JOM, 2017, 69(2): 402 − 408.
    [6]
    Xiang Z W, Yin M, Yin G F, et al. Influence of critical process parameters on the thermal physical process in selective laser melting[J]. Advanced Engineering Sciences, 2020, 52(1): 134 − 142.
    [7]
    Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608(7921): 62 − 79. doi: 10.1038/s41586-022-04914-8
    [8]
    Niu P D, Li R D, Yuan T C, et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104: 24 − 32. doi: 10.1016/j.intermet.2018.10.018
    [9]
    Lin D Y, Xu L Y, Han Y D, et al. Structure and mechanical properties of FeCoCrNi high-entropy alloy fabricate via selective laser melting[J]. Intermetallics, 2020, 127: 106963. doi: 10.1016/j.intermet.2020.106963
    [10]
    Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849 − 3860. doi: 10.1016/j.actamat.2012.04.006
    [11]
    Lu W, Zhang Y M, Hou Y C, et al. Mechanism of keyhole pore formation in metal additive manufacturing[J]. npj Computational Materials, 2022, 8(1): 22. doi: 10.1038/s41524-022-00699-6
    [12]
    Ma J L, Meng X Y, Qu T, et al. Research on microstructure and properties of alxCoCrFeNi high-entropy alloy[J]. Materials Chemistry Frontiers, 2021, 9(2): 66 − 70. doi: 10.1016/j.jallcom.2018.02.298
    [13]
    Luo S C, Gao P, Yu H C, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior[J]. Journal of Alloys and Compounds, 2019, 771: 387 − 397. doi: 10.1016/j.jallcom.2018.08.290
    [14]
    Akane W K, Amlan D, Jenniffer B, et al. Effect of solidification pathway during additive manufacturing on grain boundary fractality[J]. Additive Manufacturing Letters, 2023, 6: 100149. doi: 10.1016/j.addlet.2023.100149
    [15]
    Sun Y A, Chen P, Liu L H, et al. Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation[J]. Intermetallics, 2018, 93: 85 − 88. doi: 10.1016/j.intermet.2017.11.010
  • Related Articles

    [1]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003
    [2]HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
    [3]GUO Xiao, GU Yu, HAN Ying, XU Kai, WANG Yan, JIANG Yinglong. Study on cracking mechanism of Inconel 625 alloy surfacing metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 117-123. DOI: 10.12073/j.hjxb.20230403001
    [4]WANG Xujian, TAN Caiwang, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr /Inconel 625 laser welding joints on HEPS storage ring vacuum box[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 35-40. DOI: 10.12073/j.hjxb.20220204002
    [5]GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001
    [6]WANG Xujian, WANG Ting, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr/Inconel 625 joints by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 92-97. DOI: 10.12073/j.hjxb.20211215002
    [7]TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003
    [8]HE Shuai, WANG Lijun, GE Keke. Control of dilution rate of Inconel 625 alloy surfacing based on elman network algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 124-128.
    [9]LIANG Enbao, HU Shengsun, WANG Zhijiang. Optimization of GTAW cladding process of Inconel 625 on carbon steel using response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 85-88,108.
    [10]CHEN Jian-Jun, AN Zi-liang, SHI Jin, TU Shan-dong, WANG Zheng-dong. Experimental research and numerical simulation on creep behavior of brazed joint at high temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 39-43.
  • Cited by

    Periodical cited type(10)

    1. 张泽宇,闫梦喆,罗文睿,席鑫,路永新,林丹阳,宋晓国. GH3230合金选区激光熔化成形工艺对激光焊开裂的影响研究. 航天制造技术. 2024(03): 54-59 .
    2. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625等离子弧焊接头组织与性能研究. 稀有金属材料与工程. 2023(02): 559-567 .
    3. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625合金及焊缝在Na_2SO_4-NaCl熔盐中热腐蚀行为. 稀有金属材料与工程. 2023(05): 1842-1850 .
    4. 赵洋洋,林可欣,王颖,龚宝明. 基于位错模型的增材制造构件疲劳裂纹萌生行为. 焊接学报. 2023(07): 1-8+129 . 本站查看
    5. 朱杰,周庆军,陈晓晖,冯凯,李铸国. 铺粉厚度对选区激光熔化GH3625组织与力学性能的影响. 焊接学报. 2023(10): 12-17+133 . 本站查看
    6. 李战斌,徐兵,徐祥久,闫国斌. 镍基合金SB-444 N06625 Gr.2焊接工艺及接头性能. 机械制造文摘(焊接分册). 2022(03): 33-36 .
    7. 褚强,谢红,李文亚,杨夏炜,陈海燕,范文龙. 高温合金熔焊接头组织性能研究现状. 铸造技术. 2022(11): 955-963 .
    8. 褚清坤,余春风,邓朝阳,胡新广,闫星辰,胡永俊,刘敏. TiC含量对激光选区熔化Inconel 625合金微观组织及表面摩擦磨损性能的影响. 中国表面工程. 2021(01): 76-84 .
    9. 苏允海,杨太森,戴志勇,王英第,梁学伟,武兴刚. Inconel 625熔敷金属抗Cl~-腐蚀行为分析. 焊接学报. 2021(06): 64-70+100-101 . 本站查看
    10. 段江丽,刘禹. 复杂曲面堆焊Inconel625/925A焊接工艺与分析. 新技术新工艺. 2021(11): 15-19 .

    Other cited types(3)

Catalog

    Article views (37) PDF downloads (19) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return