Citation: | GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003 |
SLM is one of the key technologies for rapid manufacturing of high-performance high-entropy alloy components. However, in the SLM process, the multi-parameter manufacturing space directly affects the microstructure of the material, thereby influencing the performance of high-entropy alloys. This study explores the comprehensive relationship among the multi-parameter manufacturing space, density, microstructure, and microhardness of SLM-manufactured Al0.5CoCrFeNi bulk high-entropy alloy, providing theoretical references and a technical support for the SLM preparation of multi-parameter combination high-entropy alloys. The research results indicated that the optimal forming quality of the specimens was achieved with SLM process parameters of P = 100 W, v =
[1] |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 62: 214 − 220.
|
[2] |
田权伟. Al-Co-Cr-Fe-Ni高熵合金系的显微组织和力学性能及其变形机理的研究[D]. 大连: 大连理工大学, 2021.
Tian Quanwei. Microstructure, mechanical properties and deformation mechanisms of Al-Co-Cr-Fe-Ni system HEAs[D]. Dalian: Dalian University of Technology, 2021.
|
[3] |
Guo L, Gu J, Gan B, et al. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N, Si) high entropy alloy[J]. Journal of Alloys and Compounds, 2021, 865: 158892. doi: 10.1016/j.jallcom.2021.158892
|
[4] |
王永东, 宫书林, 汤明日, 等. 激光熔覆工艺对高熵合金组织与性能影响[J]. 焊接学报, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001
Wang Yongdong, Gong Shulin, Tang Mingri, et al. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. Transactions of the China Welding Institution, 2023, 44(8): 116 − 122. doi: 10.12073/j.hjxb.20220928001
|
[5] |
Wang X Q, Chou K. Electron backscatter diffraction analysis of Inconel 718 parts fabricated by selective laser melting[J]. JOM, 2017, 69(2): 402 − 408.
|
[6] |
Xiang Z W, Yin M, Yin G F, et al. Influence of critical process parameters on the thermal physical process in selective laser melting[J]. Advanced Engineering Sciences, 2020, 52(1): 134 − 142.
|
[7] |
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608(7921): 62 − 79. doi: 10.1038/s41586-022-04914-8
|
[8] |
Niu P D, Li R D, Yuan T C, et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104: 24 − 32. doi: 10.1016/j.intermet.2018.10.018
|
[9] |
Lin D Y, Xu L Y, Han Y D, et al. Structure and mechanical properties of FeCoCrNi high-entropy alloy fabricate via selective laser melting[J]. Intermetallics, 2020, 127: 106963. doi: 10.1016/j.intermet.2020.106963
|
[10] |
Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849 − 3860. doi: 10.1016/j.actamat.2012.04.006
|
[11] |
Lu W, Zhang Y M, Hou Y C, et al. Mechanism of keyhole pore formation in metal additive manufacturing[J]. npj Computational Materials, 2022, 8(1): 22. doi: 10.1038/s41524-022-00699-6
|
[12] |
Ma J L, Meng X Y, Qu T, et al. Research on microstructure and properties of alxCoCrFeNi high-entropy alloy[J]. Materials Chemistry Frontiers, 2021, 9(2): 66 − 70. doi: 10.1016/j.jallcom.2018.02.298
|
[13] |
Luo S C, Gao P, Yu H C, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior[J]. Journal of Alloys and Compounds, 2019, 771: 387 − 397. doi: 10.1016/j.jallcom.2018.08.290
|
[14] |
Akane W K, Amlan D, Jenniffer B, et al. Effect of solidification pathway during additive manufacturing on grain boundary fractality[J]. Additive Manufacturing Letters, 2023, 6: 100149. doi: 10.1016/j.addlet.2023.100149
|
[15] |
Sun Y A, Chen P, Liu L H, et al. Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation[J]. Intermetallics, 2018, 93: 85 − 88. doi: 10.1016/j.intermet.2017.11.010
|
[1] | GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003 |
[2] | HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002 |
[3] | GUO Xiao, GU Yu, HAN Ying, XU Kai, WANG Yan, JIANG Yinglong. Study on cracking mechanism of Inconel 625 alloy surfacing metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 117-123. DOI: 10.12073/j.hjxb.20230403001 |
[4] | WANG Xujian, TAN Caiwang, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr /Inconel 625 laser welding joints on HEPS storage ring vacuum box[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 35-40. DOI: 10.12073/j.hjxb.20220204002 |
[5] | GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001 |
[6] | WANG Xujian, WANG Ting, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr/Inconel 625 joints by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 92-97. DOI: 10.12073/j.hjxb.20211215002 |
[7] | TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003 |
[8] | HE Shuai, WANG Lijun, GE Keke. Control of dilution rate of Inconel 625 alloy surfacing based on elman network algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 124-128. |
[9] | LIANG Enbao, HU Shengsun, WANG Zhijiang. Optimization of GTAW cladding process of Inconel 625 on carbon steel using response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 85-88,108. |
[10] | CHEN Jian-Jun, AN Zi-liang, SHI Jin, TU Shan-dong, WANG Zheng-dong. Experimental research and numerical simulation on creep behavior of brazed joint at high temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 39-43. |
1. |
张泽宇,闫梦喆,罗文睿,席鑫,路永新,林丹阳,宋晓国. GH3230合金选区激光熔化成形工艺对激光焊开裂的影响研究. 航天制造技术. 2024(03): 54-59 .
![]() | |
2. |
张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625等离子弧焊接头组织与性能研究. 稀有金属材料与工程. 2023(02): 559-567 .
![]() | |
3. |
张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625合金及焊缝在Na_2SO_4-NaCl熔盐中热腐蚀行为. 稀有金属材料与工程. 2023(05): 1842-1850 .
![]() | |
4. |
赵洋洋,林可欣,王颖,龚宝明. 基于位错模型的增材制造构件疲劳裂纹萌生行为. 焊接学报. 2023(07): 1-8+129 .
![]() | |
5. |
朱杰,周庆军,陈晓晖,冯凯,李铸国. 铺粉厚度对选区激光熔化GH3625组织与力学性能的影响. 焊接学报. 2023(10): 12-17+133 .
![]() | |
6. |
李战斌,徐兵,徐祥久,闫国斌. 镍基合金SB-444 N06625 Gr.2焊接工艺及接头性能. 机械制造文摘(焊接分册). 2022(03): 33-36 .
![]() | |
7. |
褚强,谢红,李文亚,杨夏炜,陈海燕,范文龙. 高温合金熔焊接头组织性能研究现状. 铸造技术. 2022(11): 955-963 .
![]() | |
8. |
褚清坤,余春风,邓朝阳,胡新广,闫星辰,胡永俊,刘敏. TiC含量对激光选区熔化Inconel 625合金微观组织及表面摩擦磨损性能的影响. 中国表面工程. 2021(01): 76-84 .
![]() | |
9. |
苏允海,杨太森,戴志勇,王英第,梁学伟,武兴刚. Inconel 625熔敷金属抗Cl~-腐蚀行为分析. 焊接学报. 2021(06): 64-70+100-101 .
![]() | |
10. |
段江丽,刘禹. 复杂曲面堆焊Inconel625/925A焊接工艺与分析. 新技术新工艺. 2021(11): 15-19 .
![]() |