Citation: | TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003 |
黄群英, 李春京, 刘少军, 等. 中国实验包层模块材料研发进展[J]. 核科学与工程, 2009, 29(3): 260 − 265. doi: 10.3321/j.issn:0258-0918.2009.03.011
Huang Qunying, Li Chunjing, Liu Shaojun, et al. R & D status of materials for test blanket modules in China[J]. Nuclear Science and Engineering, 2009, 29(3): 260 − 265. doi: 10.3321/j.issn:0258-0918.2009.03.011
|
Tan L, Katoh Y, Tavassoli A A F, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service[J]. Journal of Nuclear Materials, 2016, 479: 515 − 523. doi: 10.1016/j.jnucmat.2016.07.054
|
Sklenicka V, Kucharova K, Svoboda M, et al. Long-term creep behavior of 9%-12% Cr power plant steels[J]. Master Character, 2003, 51: 35 − 37. doi: 10.1016/j.matchar.2003.09.012
|
姜志忠, 黄继华, 胡杰, 等. 聚变堆用CLAM钢激光焊接接头显微组织及性能[J]. 焊接学报, 2012, 33(2): 5 − 8.
Jiang Zhizhong, Huang Jihua, Hu Jie, et al. Microstructure and mechanical properties of laser welded joints of CLAM steel used for fusion reactor[J]. Transactions of the China Welding Institution, 2012, 33(2): 5 − 8.
|
Aubert P, Tavassoli F, Rieth M, et al. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO[J]. Journal of Nuclear Materials, 2011, 417(1−3): 43 − 50. doi: 10.1016/j.jnucmat.2010.12.248
|
Das C R, Albert S K, Sam S, et al. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process[J]. Fusion Engineering & Design, 2014, 89(11): 2672 − 2678.
|
许乐, 温建锋, 涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报, 2019, 40(8): 80 − 88.
Xu Le, Wen Jianfeng, Tu Shandong. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(8): 80 − 88.
|
Albert S K, Tabuchi M, Hongo H, et al. Effect of welding process and groove angle on type IV cracking behavior of weld joints of a ferritic steel[J]. Science & Technology of Welding & Joining, 2013, 10(2): 149 − 157.
|
Wang J, Lu S, Dong W, et al. Microstructural evolution and mechanical properties of heat affected zones for 9Cr2WVTa steels with different carbon contents[J]. Materials & Design, 2014, 64(12): 550 − 558.
|
Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications[J]. Journal of Nuclear Materials, 2016, 478: 1 − 6. doi: 10.1016/j.jnucmat.2016.05.028
|
Manugula V L, Rajulapati K V, Reddy G M, et al. A critical assessment of the microstructure and mechanical properties of friction stir welded reduced activation ferritic–martensitic steel[J]. Materials & Design, 2016, 92: 200 − 212.
|
Zhang C, Cui L, Wang D, et al. The heterogeneous microstructure of heat affect zone and its effect on creep resistance for friction stir joints on 9Cr–1.5 W heat resistant steel[J]. Scripta Materialia, 2019, 158: 6 − 10. doi: 10.1016/j.scriptamat.2018.08.028
|
雷玉成, 张鑫, 陈玲, 等. 中国低活化马氏体钢TIG焊焊接接头的高温蠕变性能分析[J]. 焊接学报, 2016, 37(3): 5 − 8.
Lei Yucheng, Zhang Xin, Chen Ling, et al. Analysis on creep properties of TIG welding joints of China low activation martensitic steel[J]. Transactions of the China Welding Institution, 2016, 37(3): 5 − 8.
|
Norton F H. The creep of steel at high temperatures[M]. McGraw-Hill Book Company, Incorporated, 1929.
|
Betten J. Creep mechanics[M]. Springer Science & Business Media, 2008.
|
Deng K K, Li J C, Xu F J, et al. Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite[J]. Materials & Design, 2015, 67(2): 72 − 81.
|
Lee J S, Armaki H G, Maruyama K, et al. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel[J]. Materials Science and Engineering: A, 2006, 428(1/2): 270-275.
|
叶有俊, 王一宁, 姜勇, 等. 基于碳化物相分析法的 P92 钢寿命无损评价[J]. 压力容器, 2020, 37(8): 1 − 5, 23.
Ye Youjun, Wang Yining, Jiang Yong, et al. Nondestructive life assessment based on carbide phase analysis of P92 steel[J]. Pressure Vessel Technology, 2020, 37(8): 1 − 5, 23.
|
Zhang X, Lei Y, Chen L, et al. Study on creep properties for TIG welded joints of CLAM steel[J]. Journal of Fusion Energy, 2016, 35(2): 299 − 304. doi: 10.1007/s10894-015-0024-3
|
[1] | WEN Xue, WANG Honghui, LI Xiyan, QIAN Jiankang, BI Siyuan, LEI Zhenglong. The difference of CTOD of X80M pipeline steel fully automatic welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 98-104. DOI: 10.12073/j.hjxb.20230313001 |
[2] | ZHANG Nan1,2, TIAN Zhiling2, ZHANG Xi1, YANG Jianwei1. Fracture toughness of CGHAZ of Q690CFD high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 26-31,36. DOI: 10.12073/j.hjxb.2018390007 |
[3] | DENG Caiyan, MENG Qingyu, WANG Dongpo, GONG Baoming. Influence of maximum fatigue precracking force on CTOD value of DH36 flux-cored wire CO2 protection welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 66-70. |
[4] | WU Shipin, WANG Dongpo, DENG Caiyan, WANG Ying. Investigation on Pop-in phenomenon and its causes in CTOD test for weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 105-108. |
[5] | WANG Zhijian, JIANG Jun, WANG Dongpo, DENG Caiyan. CTOD fracture toughness test for super-thick welded joints of D36 offshore platform steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 103-107. |
[6] | TONG Lige, BAI Shiwu, LIU Fangming. Prediction system of CTOD for high strength pipeline steel welded joint based on back propagation artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 96-98. |
[7] | WU Bing, ZUO Cong-jin, LI Jin-wei, ZHANG Yan-hua, XIONG Lin-yu. Experimeneal research on high Temperature CTOD of electron beam welded joints of GH4169 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 109-112. |
[8] | WANG Jian-ping, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. Pop-in effect and its assessment in CTOD test for submerged-arc welded joint of steel EH36[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 80-84. |
[9] | DENG Cai yan, ZHANG Yu feng, HUO Li xing, BAI Bing ren, LI Xiao wei, CAO Jun. CTOD fracture toughness of welded joints of X65 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 13-16. |
[10] | YANG Xin-qi, WANG Dong-po, LI Xiao-wei, LI Lei, CAO-Jun, HUO Li-xing, ZHANG Yu-feng. Large-Sized CTOD Test for Welded Joints of Offshore Petroleum Platform[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (4): 48-52. |
1. |
刘天元,鲍劲松,汪俊亮,顾俊. 融合时序信息的激光焊接熔透状态识别方法. 中国激光. 2021(06): 228-238 .
![]() | |
2. |
王东亮,尹东海,裴雷振,陆凯雷. ZAM薄板激光焊接性能研究与防锈补偿. 热加工工艺. 2020(19): 145-149 .
![]() |