Citation: | GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001 |
郭建亭. 高温合金材料学(上册)应用基础理论[M]. 北京: 科学出版社, 2008.
Guo Jianting. Materials science and engineering for superalloys (Volume one): Application of basic theory[M]. Beijing: Science Press, 2008
|
黄凤晓. 激光熔覆和熔覆成形镍基合金的组织与性能研究[D]. 长春: 吉林大学, 2011.
Huang Fengxiao. An investigation on microstructure and properties of Ni-based alloy by laser cladding and laser cladding forming[D]. Changchun: Jilin University, 2011.
|
Chen Y H, Xu M F, Zhang T M, et al. Grain refinement and mechanical properties improvement of Inconel 625 alloy fabricated by ultrasonic-assisted wire and arc additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 910: 164957. doi: 10.1016/j.jallcom.2022.164957
|
Gamon A, Arrieta E, Gradld P R, et al. Microstructure and hardness comparison of as-built Inconel 625 alloy following various additive manufacturing processes[J]. Results in Materials, 2021, 12: 100239. doi: 10.1016/j.rinma.2021.100239
|
Zhang F Y, Luo Y, Yang S Q, et al. Mechanical properties improvement of nickel-based alloy 625 fabricated by powder-fed laser additive manufacturing based on linear beam oscillation[J]. Materials Science & Engineering: A, 2022, 842: 143054. doi: 10.1016/j.msea.2022.143054
|
Wu B T, Qiu Z J, Dong B S, et al. Effects of synchronized magnetic arc oscillation on microstructure, texture, grain boundary and mechanical properties of wire arc additively manufactured Ti6Al4V alloy[J]. Additive Manufacturing, 2022, 54: 102723. doi: 10.1016/j.addma.2022.102723
|
Chen L, He Y, Yang Y, et al. The research status and development trend of additive manufacturing technology[J]. International Journal of Advanced Manufacturing Technology, 2016, 89: 1 − 10.
|
陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128.
Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128.
|
Zhao P K, Fang K, Tang C, et al. Effect of interlayer cooling time on the temperature field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.
|
Guo L L, Zheng H L, Liu S H, et al. Formation quality optimization and corrosion performance of Inconel 625 weld overlay using hot wire pulsed TIG[J]. Rare Metal Materials And Engineering, 2016, 45(9): 19 − 26.
|
蔡笑宇, 董博伦, 王俊哲, 等. 热处理对GTA增材制造TiAl合金组织与性能的调控[J]. 焊接学报, 2022, 43(3): 7 − 12.
Cai Xiaoyu, Dong Bolun, Wang Junzhe, et al. Control of the microstructure and mechanical properties of GTA-based wire arc additive manufactured TiAl alloys using post heat treatment[J]. Transactions of the China Welding Institution, 2022, 43(3): 7 − 12.
|
Hu Y L, Lin X, Li Y L, et al. Influence of heat treatments on the microstructure and mechanical properties of Inconel 625 fabricated by directed energy deposition[J]. Materials Science & Engineering A, 2021, 817: 141309.
|
Marchese G, Lorusso M, Parizia S, et al. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion[J]. Materials Science & Engineering: A, 2018, 729: 64 − 75. doi: 10.1016/j.msea.2018.05.044
|
Dinda G P, Dasgupta A K, Mazumderb J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructures evolution and thermal stability[J]. Materials Science & Engineering A, 2009, 509(1): 98 − 104.
|
Miao Z J, Shan A D, Wu Y B, et al. Quantitative analysis of homogenization treatment of Inconel 718 superalloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 1009 − 1017. doi: 10.1016/S1003-6326(11)60814-5
|
Li S, Wei Q, Shi Y, Zhu Z, et al. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting[J]. Journal of Materials Science & Technology, 2015, 31: 946 − 952.
|
吕耀辉, 徐富家, 刘玉欣, 等. 固溶温度对等离子快速成形 Inconel625 合金组织的影响[J]. 材料科学与工艺, 2013, 21(2): 14 − 19.
Lyu Yaohui, Xu Fujia, Liu Yuxin, et al. Effect of solution temperature on the microstructure of Inconel 625 alloy fabricated by PAW rapid prototyping[J]. Materials Science & Technology, 2013, 21(2): 14 − 19.
|
Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming[J]. Journal of Alloys and Compounds, 2018, 767: 330 − 344.
|
Eric A L, Mark R S, Michael B K, et al. Precipitation and dissolution of δ and γ″ during heat treatment of a laser powder-bed fusion produced Ni-based superalloy[J]. Scripta Materialia, 2018, 154: 83 − 86. doi: 10.1016/j.scriptamat.2018.05.025
|
Pan J J, He X X, Zhao P C, et al. Numerical analysis of typical droplets transfer mode in wire and arc additive manufacture process[J]. China Welding, 2020, 29(3): 44 − 53.
|
胡显军, 孙丹丹, 张珂. 固溶温度对热轧 Inconel625 合金组织与力学性能的影响[J]. 材料热处理学报, 2019, 40(9): 64 − 69.
Hu Xianjun, Sun Dandan, Zhang Ke, et al. Effect of solution temperature on microstructure and mechanical properties of hot rolled Inconel625 alloy[J]. Transactions of Materials and Heat treatment, 2019, 40(9): 64 − 69.
|
1. |
温淳杰,姚屏,范谨锐,曾祥坤,喻小燕,武威. 316L不锈钢和镍基合金梯度材料MIG焊电弧增材制造工艺研究. 精密成形工程. 2024(10): 208-216 .
![]() |