Citation: | ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002 |
Zhang C, Feng K, Kokawa H, et al. Correlation between microstructural heterogeneity and anisotropy of mechanical properties of laser powder bed fused CoCrFeMnNi high entropy alloy[J]. Materials Science & Engineering A, 2022, 855: 143920.
|
Zhang C, Feng K, Kokawa H, et al. On the origin and evolution of cellular structures in CoCrFeMnNi high entropy alloy fabricated by laser powder bed fusion[J]. Materials Characterization, 2023, 196: 112586. doi: 10.1016/j.matchar.2022.112586
|
Cieslak M, Headley T, Romig A, et al. A melting and solidification study of alloy 625[J]. Metallurgical Transactions A, 1988, 19(9): 2319 − 2331. doi: 10.1007/BF02645056
|
Floreen S, Fuchs G E, Yang W J. The metallurgy of alloy 625[J]. Superalloys, 1994, 718(625): 13 − 37.
|
吴树雄, 尹士科, 路勇超. 镍基耐蚀合金及其焊接特性概述[J]. 焊接技术, 2019(7): 1 − 6. doi: 10.13846/j.cnki.cn12-1070/tg.2019.07.001
Wu Shuxiong, Yin Shike, Lu Yongchao. Nickel-based corrosion-resistant alloy and its welding characteristics[J]. Welding Technology, 2019(7): 1 − 6. doi: 10.13846/j.cnki.cn12-1070/tg.2019.07.001
|
Zhu J, Shao C, Lu F, et al. Origin of the anisotropic ductility and the dynamic recrystallization-like deformation behavior of laser powder bed fusion Inconel 625 at elevated temperature[J]. Scripta Materialia, 2022, 221: 114945. doi: 10.1016/j.scriptamat.2022.114945
|
Zhang F, Levine L E, Allen A J, et al. Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion[J]. Acta Materialia, 2018, 152: 200 − 214. doi: 10.1016/j.actamat.2018.03.017
|
Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys[J]. Acta Materialia, 2017, 139: 244 − 253. doi: 10.1016/j.actamat.2017.05.003
|
张宇, 姜云, 胡晓安. 选区激光熔化成形Inconel 625合金的激光焊接头组织及高温蠕变性能[J]. 焊接学报, 2020, 41(5): 78 − 84.
Zhang Yu, Jiang Yun, Hu Xiaoan. Microstructure and high temperature creep properties of Inconel 625 alloy by selective laser melting[J]. Transactions of the China Welding Institution, 2020, 41(5): 78 − 84.
|
Mishurova T, Artzt K, Haubrich J, et al. New aspects about the search for the most relevant parameters optimizing SLM materials[J]. Additive Manufacturing, 2019, 25: 325 − 334. doi: 10.1016/j.addma.2018.11.023
|
Arisoy Y M, Criales L E, Ozel T, et al. Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8): 1393 − 1417. doi: 10.1007/s00170-016-9429-z
|
Brown C U, Jacob G, Stoudt M, et al. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability[J]. Journal of Materials Engineering and Performance, 2016, 25(8): 3390 − 3397. doi: 10.1007/s11665-016-2169-2
|
Criales L E, Arisoy Y M, Lane B, et al. Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis[J]. International Journal of Machine Tools & Manufacture, 2017, 121: 22 − 36.
|
Liu J W, Song Y A, Chen C Y, et al. Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Materials & Design, 2020, 186: 108355. doi: 10.1016/j.matdes.2019.108355
|
Pauza J, Rollett A. Simulation study of hatch spacing and layer thickness effects on microstructure in laser powder bed fusion additive manufacturing using a texture-aware solidification potts model[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 7007 − 7018. doi: 10.1007/s11665-021-06110-7
|
Wan H Y, Zhou Z J, Li C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting[J]. Journal of Materials Science & Technology, 2018, 34(10): 1799 − 1804.
|
Zhou Y H, Zhang Z H, Wang Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 2019, 25: 204 − 217. doi: 10.1016/j.addma.2018.10.046
|
[1] | CHEN Haiyong, DU Xiaolin, DONG Yan. Tiny visual feature extraction of random changing weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 97-101. |
[2] | CHI Dazhao, MAI Chengle, SUN Changli, GANG Tie. Wavelet package based ultrasonic defect detection method for testing austenitic stainless steel weldment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(12): 43-46. |
[3] | ZHAO Huihuang, ZHOU Dejian, WU Zhaohua, LI Chunquan, LI Kangman. SMT soldering image denoising based on wavelet packet transform and adaptive threshold[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 73-76. |
[4] | LIU Lijun, LAN Hu, WEN Jianli, YU Zhongwei. Feature extraction of penetration arc sound in MIG welding via wavelet packet frequency-band energy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 45-49. |
[5] | WEN Jianli, LIU Lijun, LAN Hu. Penetration state recognition of MIG welding based on genetic wavelet neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 41-44. |
[6] | DI Xinjie, LI Wushen, BAI Shiwu, LIU Fangming. Metal magnetic memory signal recognition by neural network for welding crack[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 13-16. |
[7] | LI Hexi, WANG Guorong, SHI Yonghua, ZHANG Weimin. Automatic recognition of welding targets based on normalized singular value decomposition of image matrix[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 35-39. |
[8] | TIAN Songya, WU Dongchun, SUN Ye, FU Weiliang. Wavelet detection of short circuit signal in CO2 arc welding based on DSP[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 65-68. |
[9] | YANG Lijun, XU Licheng, ZHANG Xiaonan, LI Junyue. Wavelet filtering of electric signals in short circuit CO2 welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 31-34,38. |
[10] | QU Wen-tai, ZHU jing. Research on Technology of Detecting Welding Seam Based on Gauss Wavelet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (4): 64-68. |