Advanced Search
WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001
Citation: WANG Qun, QU Yuntao, ZHANG Biao, ZHANG Yuxian, LI Rui, LI Ning, YAN Jiazhen. Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 57-64. DOI: 10.12073/j.hjxb.20230421001

Bending fatigue behavior of biomedical Ti-6Al-4V alloy prepared by selective laser melting

More Information
  • Received Date: April 20, 2023
  • Available Online: February 29, 2024
  • The bending fatigue behavior, the corresponding microstructure and fracture morphology of SLM Ti-6Al-4V alloy were studied. The rolled Ti-6Al-4V alloy with the same chemical composition as the SLM sample was set for comparative study. X-ray diffraction (XRD), scanning electron microscope (SEM) with electron backscatter diffraction (EBSD) were used to analyze the microstructure of the alloy. The results show that the three-point bending fatigue cracks initiate from stress concentration areas near the quasi-cleavage fracture surface, and then propagate inward.The bending fatigue life of SLM Ti-6Al-4V alloy was higher than that of rolled Ti-6Al-4V alloy. SLM Ti-6Al-4V internal hole defects led to stress concentration near the surface, resulting in fatigue crack nucleation. However, the random orientation α + β grains, secondary cracks, and holes in the SLM Ti-6Al-4V alloy delayed the crack propagation and improved fatigue life. As for rolled Ti-6Al-4V, the macrozone composed of a large number of α grains with approximate orientation caused the stress concentration and the formation of micro-cracks, which led to the nucleation of fatigue cracks. Moreover, the macrozone had little hindrance to crack propagation, which is not conducive to the fatigue life of materials.

  • [1]
    Liu Shunyu, Shin Yung C. Additive manufacturing of Ti-6Al-4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.
    [2]
    Azizi H, Zurob H, Bose B, et al. Additive manufacturing of a novel Ti-Al-V-Fe alloy using selective laser melting[J]. Additive Manufacturing, 2018, 21: 529 − 535. doi: 10.1016/j.addma.2018.04.006
    [3]
    Galindo-Valdés J S, Cortés-Hernández D A, Ortiz-Cuellar J C, et al. Laser deposition of bioactive coatings by in situ synthesis of pseudowollastonite on Ti6Al4V alloy[J]. Optics & Laser Technology, 2020, 134: 106586.
    [4]
    Ginestra P, Ferraro R M, Zohar-Hauber K, et al. Selective laser melting and electron beam melting of Ti6Al4V for orthopedic applications: A comparative study on the applied building direction[J]. Materials, 2020, 13(23): 5584. doi: 10.3390/ma13235584
    [5]
    李星燃, 刘政麟, 姜鹏飞, 等. 激光增材制造Ti6Al4V/NiTi仿生功能梯度材料的界面特征及性能[J]. 焊接学报, 2023, 44(10): 27 − 33. doi: 10.12073/j.hjxb.20230307001

    Liu Xingran, Liu Zhenglin, Jiang Pengfei, et al. Interface characteristics and properties of Ti6Al4V/NiTi bionic functionally graded materials fabricated by laser additive manufacturing[J]. Transactions of the China Welding Institution, 2023, 44(10): 27 − 33. doi: 10.12073/j.hjxb.20230307001
    [6]
    Qian C, Xu H, Zhong Q. The influence of process parameters on corrosion behavior of Ti-6Al-4V alloy processed by selective laser melting[J]. Journal of Laser Applications, 2020, 32(3): 032010. doi: 10.2351/1.5139499
    [7]
    Hafiz Muhammad Hamza, Kashif Mairaj Deen, Waseem Haider. Microstructural examination and corrosion behavior of selective laser melted and conventionally manufactured Ti-6Al-4V for dental applications[J]. Materials Science and Engineering:C, 2020, 113: 110980. doi: 10.1016/j.msec.2020.110980
    [8]
    Fernandez D S, Wynne B P, Crawforth D P, et al. The Effect of forging texture and machining parameters on the fatigue performance of titanium alloy disc components[J]. International Journal of Fatigue, 2020, 142: 105949.
    [9]
    Manowar Hussain, Pranshul Gupta, P Kumar, et al. Selective laser melting of single track on Ti–6Al–4V powder: Experimentation and finite element analysis[J]. Arabian Journal for Science and Engineering, 2020, 45: 1173 − 1180. doi: 10.1007/s13369-019-04263-1
    [10]
    Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303 − 3312. doi: 10.1016/j.actamat.2010.02.004
    [11]
    Xiao Zhongxu, Chen Changpeng, Zhu Haihon, et al. Study of residual stress in selective laser melting of Ti-6Al-4V[J]. Materials & Design, 2020, 193: 108846.
    [12]
    Liu Wei, Chen Chaoyue, Shuai Sansan, et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography[J]. Materials Science & Engineering, A. Structural Materials:Properties, Misrostructure and Processing, 2020, 797: 139981.
    [13]
    Chang Cheng, Huang Jian, Yan Xingchen, et al. Microstructure and mechanical deformation behavior of selective laser melted Ti-6Al-4V ELI alloy porous structures[J]. Materials Letters, 2020, 277: 128366. doi: 10.1016/j.matlet.2020.128366
    [14]
    Miao Xiaojin, Liu Xin, Lu Peipei, et al. Influence of scanning strategy on the performances of GO-reinforced Ti-6Al-4V nanocomposites manufactured by SLM[J]. Metals - Open Access Metallurgy Journal, 2020, 10(10): 1379.
    [15]
    Liu Jiangwei, Sun Qidon, Zhou Chang'an, et al. Achieving Ti-6Al-4V alloys with both high strength and ductility via selective laser melting[J]. Materials Science and Engineering, 2019, 766: 138319.1 − 138319.8.
    [16]
    Xu Yangli, Zhang Dongyun, Guo Yanwu, et al. Microstructural tailoring of as-selective laser melted Ti-6Al-4V alloy for high mechanical properties[J]. Journal of Alloys and Compounds, 2019, 816: 152536.
    [17]
    Li Junfeng, Wei Zhengying, Yang Lixiang, et al. Finite element analysis of thermal behavior and experimental investigation of Ti-6Al-4V in selective laser melting[J]. Optik - International Journal for Light and Electron Optics, 2020, 207: 163760. doi: 10.1016/j.ijleo.2019.163760
    [18]
    Rautio T, Hamada A, Mkikangas J, et al. Laser welding of selective laser melted Ti-6Al-4V: Microstructure and mechanical properties[J]. Materials Today: Proceedings, 2020, 28: 907 − 911.
    [19]
    Jeremy H Rao, Nikki Stanfor. A survey of fatigue properties from wrought and additively manufactured Ti-6Al-4V[J]. Materials Letters, 2020, 283: 128800.
    [20]
    Hu Y N, Wu S, Wu Z, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020, 136: 105584. doi: 10.1016/j.ijfatigue.2020.105584
    [21]
    Ganor Yaron Italy, Eitan Tiferet, Vogel Sven C, et al. Tailoring microstructure and mechanical properties of additively-manufactured Ti-6Al-4V using post processing[J]. Materials, 2021, 14(3): 658.
    [22]
    Wang Bohan, Cheng Li, Cui Wenbin, et al. Effect of forging process on high cycle and very high cycle fatigue properties of TC4 titanium alloy under three-point bending[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44: 2054 − 2069.
    [23]
    Jesus J S, Borrego L P, Ferreira J A M, et al. Fatigue crack growth behaviour in Ti-6Al-4V alloy specimens produced by selective laser melting[J]. International Journal of Fracture, 2020, 223: 123 − 133. doi: 10.1007/s10704-019-00417-2
    [24]
    Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V[J]. Materials Science & Engineering A, 2014, 616: 1 − 11.
    [25]
    Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6AI-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science, 2011, 42A(10): 3190 − 3199.
    [26]
    Xu Z W, Liu A, Wang X S. Fatigue performance differences between rolled and selective laser melted Ti6Al4V alloys[J]. Materials Characterization, 2022, 189: 111963. doi: 10.1016/j.matchar.2022.111963
    [27]
    Bao X, Cheng L, Ding J, et al. The effect of microstructure and axial tension on three-point bending fatigue behavior of TC4 in high cycle and very high cycle regimes[J]. Materials, 2020, 13(1): 68.
    [28]
    Qian Guian, Jian Zhimo, Pan Xiangnan, et al. In-situ investigation on fatigue behaviors of Ti-6Al-4V manufactured by selective laser melting[J]. International Journal of Fatigue, 2019, 133: 105424.
    [29]
    Dong Xin, Zhou Yanan, Sun Qi, et al. Fatigue behavior of biomedical Co–Cr–Mo–W alloy fabricated by selective laser melting[J]. Materials Science and Engineering:A, 2020, 795: 140000. doi: 10.1016/j.msea.2020.140000
    [30]
    Uta E, Gey N, Bocher P, et al. Texture heterogeneities in αp/αs titanium forging analysed by EBSD‐Relation to fatigue crack propagation[J]. Journal of Microscopy, 2010, 233(3): 451 − 459.
    [31]
    Xu Zhongwei, Liu An, Wang Xishu, et al. Fatigue limit prediction model and fatigue crack growth mechanism for selective laser melting Ti-6Al-4V samples with inherent defects[J]. International Journal of Fatigue, 2020, 143: 106008.
    [32]
    Gey N, Bocher P, Uta E, et al. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure[J]. Acta Materialia, 2012, 60(6-7): 2647 − 2655. doi: 10.1016/j.actamat.2012.01.031
    [33]
    Kou Hongchao, Chen Yi, Tang Bin, et al. An experimental study on the mechanism of texture evolution during hot-rolling process in a β titanium alloy[J]. Journal of Alloys and Compounds, 2014, 603: 23 − 27. doi: 10.1016/j.jallcom.2014.03.070
  • Related Articles

    [1]GE Yaqiong, SONG Yue, CHANG Zexin, HOU Qingling, XU Haijun, QIAO Jianfu, HOU Min. Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 89-95. DOI: 10.12073/j.hjxb.20231128003
    [2]HE Siyi, LIU Xiangyu, GUO Shuangquan, WANG Ning, XIAO Lei, XU Yi. Study on factors affecting high temperature anisotropic stress rupture properties of SLM-IN718 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 91-98. DOI: 10.12073/j.hjxb.20230424002
    [3]GUO Xiao, GU Yu, HAN Ying, XU Kai, WANG Yan, JIANG Yinglong. Study on cracking mechanism of Inconel 625 alloy surfacing metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 117-123. DOI: 10.12073/j.hjxb.20230403001
    [4]WANG Xujian, TAN Caiwang, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr /Inconel 625 laser welding joints on HEPS storage ring vacuum box[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 35-40. DOI: 10.12073/j.hjxb.20220204002
    [5]GU Xiaoyan, LIN Xiaopeng, WANG Jinfeng, LI Huan. Control of the microstructure and mechanical properties of CMT arc wire additive manufactured Inconel 625 alloy by solution treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 70-76. DOI: 10.12073/j.hjxb.20220608001
    [6]WANG Xujian, WANG Ting, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr/Inconel 625 joints by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 92-97. DOI: 10.12073/j.hjxb.20211215002
    [7]TIAN Chaobo, YANG Xinqi, LI Shengli, TANG Wenshen, LI Huijun. High temperature creep behavior of friction stir welding joints for CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 38-45. DOI: 10.12073/j.hjxb.20200811003
    [8]HE Shuai, WANG Lijun, GE Keke. Control of dilution rate of Inconel 625 alloy surfacing based on elman network algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 124-128.
    [9]LIANG Enbao, HU Shengsun, WANG Zhijiang. Optimization of GTAW cladding process of Inconel 625 on carbon steel using response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 85-88,108.
    [10]CHEN Jian-Jun, AN Zi-liang, SHI Jin, TU Shan-dong, WANG Zheng-dong. Experimental research and numerical simulation on creep behavior of brazed joint at high temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 39-43.
  • Cited by

    Periodical cited type(10)

    1. 张泽宇,闫梦喆,罗文睿,席鑫,路永新,林丹阳,宋晓国. GH3230合金选区激光熔化成形工艺对激光焊开裂的影响研究. 航天制造技术. 2024(03): 54-59 .
    2. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625等离子弧焊接头组织与性能研究. 稀有金属材料与工程. 2023(02): 559-567 .
    3. 张忠科,熊健强,初树晟,李轩柏,蒋常铭. Inconel625合金及焊缝在Na_2SO_4-NaCl熔盐中热腐蚀行为. 稀有金属材料与工程. 2023(05): 1842-1850 .
    4. 赵洋洋,林可欣,王颖,龚宝明. 基于位错模型的增材制造构件疲劳裂纹萌生行为. 焊接学报. 2023(07): 1-8+129 . 本站查看
    5. 朱杰,周庆军,陈晓晖,冯凯,李铸国. 铺粉厚度对选区激光熔化GH3625组织与力学性能的影响. 焊接学报. 2023(10): 12-17+133 . 本站查看
    6. 李战斌,徐兵,徐祥久,闫国斌. 镍基合金SB-444 N06625 Gr.2焊接工艺及接头性能. 机械制造文摘(焊接分册). 2022(03): 33-36 .
    7. 褚强,谢红,李文亚,杨夏炜,陈海燕,范文龙. 高温合金熔焊接头组织性能研究现状. 铸造技术. 2022(11): 955-963 .
    8. 褚清坤,余春风,邓朝阳,胡新广,闫星辰,胡永俊,刘敏. TiC含量对激光选区熔化Inconel 625合金微观组织及表面摩擦磨损性能的影响. 中国表面工程. 2021(01): 76-84 .
    9. 苏允海,杨太森,戴志勇,王英第,梁学伟,武兴刚. Inconel 625熔敷金属抗Cl~-腐蚀行为分析. 焊接学报. 2021(06): 64-70+100-101 . 本站查看
    10. 段江丽,刘禹. 复杂曲面堆焊Inconel625/925A焊接工艺与分析. 新技术新工艺. 2021(11): 15-19 .

    Other cited types(3)

Catalog

    Article views (137) PDF downloads (31) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return