Advanced Search
SHI Ye, LEI Lei, YAN Ming, SONG Chunyu. Quantitative analysis of fatigue service failure law of 5182 aluminium alloy clinched joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 75-81. DOI: 10.12073/j.hjxb.20231219005
Citation: SHI Ye, LEI Lei, YAN Ming, SONG Chunyu. Quantitative analysis of fatigue service failure law of 5182 aluminium alloy clinched joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 75-81. DOI: 10.12073/j.hjxb.20231219005

Quantitative analysis of fatigue service failure law of 5182 aluminium alloy clinched joints

More Information
  • Received Date: December 18, 2023
  • Available Online: February 06, 2025
  • This study investigates 5182 aluminum alloy clinched joints during fatigue service. The natural frequency of joints was periodically monitored through alternating dynamic response-strength degradation tests. The residual static strength was measured throughout the fatigue service process. The failure mechanism of fatigue degradation was quantitatively analyzed using natural frequency variations and strength degeneration laws. A quantitative method for joint service failure was established based on a nonlinear residual strength theoretical model and cumulative damage model. The results demonstrate that the natural frequency curve undergoes a significant leftward shift during fatigue loading. As the service life increases, the natural frequency of the joint gradually decreases, and the residual strength of the joint also decreases. The trend of the natural frequency and residual strength with the number of fatigue cycles is roughly the same, and the curve is clearly divided into stages. Both show a decreasing process from gentle to sharp. Based on the two models, a theoretical formula for the fatigue strength degradation of clinched joints was derived. A residual strength prediction model for 5182 aluminum alloy clinched joints was further established, and it shows validated practical effectiveness.

  • [1]
    王科学, 王东波, 黄勇, 等. 铝合金材料在汽车轻量化领域应用的研究现状[J]. 铝加工, 2022, 6: 3 − 6. doi: 10.3969/j.issn.1005-4898.2022.01.01

    Wang Kexue, Wang Dongpo, Huang Yong, et al. Research status of application of aluminum alloy materials in the field of automobile lightweight[J]. Aluminium Fabrication, 2022, 6: 3 − 6. doi: 10.3969/j.issn.1005-4898.2022.01.01
    [2]
    韩俊超, 董晓传, 曲周德, 等. 5182铝合金板材成形性能研究[J]. 塑性工程学报, 2020, 27(2): 87 − 93. doi: 10.3969/j.issn.1007-2012.2020.02.011

    Han Junchao, Dong Xiaochuan, Qu Zhoude, et al. Study on formability of 5182 aluminum alloy sheet[J]. Journal of Plasticity Engineering, 2020, 27(2): 87 − 93. doi: 10.3969/j.issn.1007-2012.2020.02.011
    [3]
    Kaya I, Baser T A, Kahraman N. Mechanical properties and corrosion behavior of similar/dissimilar resistance spot welded automotive aluminum alloys[J]. Materialwissenschaft und Werkstofftechnik, 2023, 54(11): 1433 − 1443. doi: 10.1002/mawe.202200200
    [4]
    Song C, Lei L, Yan M. Clinched joining mechanical performance in multiple states[J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(9): 3799 − 3812.
    [5]
    徐良, 李康宁, 杨海锋, 等. 微织构特征对铝合金-CFRTP激光焊接头力学性能的影响[J]. 焊接学报, 2024, 45(2): 75 − 81. doi: 10.12073/j.hjxb.20230915001

    Xu Liang, Li Kangning, Yang Haifeng, et al. Effect of microtexturing characteristics on the performance of laser welded aluminum alloy-CFRTP joints[J]. Transactions of the China Welding Institution, 2024, 45(2): 75 − 81. doi: 10.12073/j.hjxb.20230915001
    [6]
    刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 217 − 228. doi: 10.11896/cldb.21110241

    Liu Yang, Zhuang Weimin. Research progress on clinching technologies for metal-polymer and metal-composite thin-walled structures[J]. Materials Reports, 2023, 37(3): 217 − 228. doi: 10.11896/cldb.21110241
    [7]
    Zhang X, Chen C. Investigation of the underwater clinching process for joining metal sheets[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237(6): 2383 − 2391. doi: 10.1177/09544089221137424
    [8]
    Lei L, Shi Y, Yan M, et al. Effect of foam metal on dynamic response and fatigue damage of 5182 aluminium alloy clinched joints[J]. Engineering Failure Analysis, 2024(158): 108001.
    [9]
    赵倩, 冯侃. 基于高频动态响应的点阵夹芯结构损伤识别研究[J]. 应用力学学报, 2023, 40(4): 873 − 882.

    Zhao Qian, Feng Kan. Research on damage identification of lattice sandwich structure based on high frequency dynamic response[J]. Chinese Journal of Applied Mechanics, 2023, 40(4): 873 − 882.
    [10]
    李承山, 尚德广, 王瑞杰, 等. 变幅加载下基于动态响应特性的点焊接头疲劳寿命预测[J]. 机械工程学报, 2009, 45(4): 70 − 75. doi: 10.3901/JME.2009.04.070

    Li Chengshan, Shang Deguang, Wang Ruijie, et al. Fatigue life prediction based on dynamic response characteristics for spot-welded joints under variable amplitude loading[J]. Journal of Mechanical Engineering, 2009, 45(4): 70 − 75. doi: 10.3901/JME.2009.04.070
    [11]
    Li C, Wang Q, Zhu R, et al. Damage identification for pile foundation in high-piled wharf using composite energy factors driven by dynamic response under wave impact excitation[J]. Ocean Engineering, 2024, 291: 116286. doi: 10.1016/j.oceaneng.2023.116286
    [12]
    Nishizu T, Takezawa A, Kitamura M. Eigenfrequecy-based damage identification method for non-destructive testing based on topology optimization[J]. Engineering Optimization, 2016, 49(3): 417 − 433.
    [13]
    湛兰, 秦湘阁. 不锈钢车体侧墙电阻点焊接头疲劳寿命预测[J]. 佳木斯大学学报, 2017, 35(5): 799 − 802.

    Zhan Lan, Qin Xiangge. Fatigue life prediction of spot welded joints of stainless steel body side wall[J]. Journal of Jiamusi University, 2017, 35(5): 799 − 802.
    [14]
    李学朋, 尚德广, 周健伟, 等. 基于固有频率变化和载荷特性的点焊疲劳寿命预测[J]. 焊接学报, 2010, 31(5): 85 − 88.

    Li Xuepeng, Shang Deguang, Zhou Jianwei, et al. Prediction of fatigue life based on change of natural frequency and load characteristic for spot welded joint[J]. Transactions of the China Welding Institution, 2010, 31(5): 85 − 88.
    [15]
    Sha G G, Radzieński M, Cao M S, et al. A novel method for single and multiple damage detection in beams using relative natural frequency changes[J]. Mechanical Systems and Signal Processing, 2019, 132(1): 335 − 352.
    [16]
    奚蔚, 郑晓玲, 汤家力, 等. 刚度退化准则对复合材料强度分析的影响研究[J]. 机械设计与制造工程, 2021, 50(10): 74 − 77. doi: 10.3969/j.issn.2095-509X.2021.10.016

    Xi Wei, Zheng Xiaoling, Tang Jiali, et al. Influence study of stiffness degradation criterion on composite strength analysis[J]. Machine Design and Manufacturing Engineering, 2021, 50(10): 74 − 77. doi: 10.3969/j.issn.2095-509X.2021.10.016
    [17]
    Khan A I, Venkataraman S, Miller I. Predicting fatigue damage of composites using strength degradation and cumulative damage model[J]. Journal of Composites Science, 2018, 2(9): 1 − 21.
    [18]
    Gao J, An Z. A new probability model of residual strength of material based on interference theory[J]. International Journal of Fatigue, 2019(118): 202 − 208.
    [19]
    Jiang C, Liu X, Zhang M, et al. An improved nonlinear cumulative damage model for strength degradation considering loading sequence[J]. International Journal of Damage Mechanics, 2021, 30(3): 415 − 430. doi: 10.1177/1056789520964860
    [20]
    刘苏超, 姜长杰, 刘新田. 基于强度退化的金属材料疲劳寿命预估[J]. 机械强度, 2021, 43(3): 742 − 746.

    Liu Suchao, Jiang ChangJie, Liu Xintian. Fatigue life prediction of metal materials based on strength degradation[J]. Journal of Mechanical Strength, 2021, 43(3): 742 − 746.
    [21]
    李威. 考虑强度退化的非线性累积损伤模型分析[J]. 机械强度, 2020, 42(3): 723 − 727.

    Li Wei. Analysis of nonlinear cumulative damage model considering strength degradation[J]. Journal of Mechanical Strength, 2020, 42(3): 723 − 727.
    [22]
    孙剑萍, 汤兆平, 罗意平. 多级载荷累积损伤下结构的动态可靠性分析[J]. 中国机械工程, 2018, 29(7): 794 − 803. doi: 10.3969/j.issn.1004-132X.2018.07.007

    Sun Jianping, Tang Zhaoping, Luo Yiping. Time-dependent reliability analysis for structures under multi-level loads and cumulative damages[J]. China Mechanical Engineering, 2018, 29(7): 794 − 803. doi: 10.3969/j.issn.1004-132X.2018.07.007
    [23]
    Zhang L. A new fatigue cumulative damage model based on material parameters and stress interaction[J]. International Journal of Fatigue, 2024, 179: 108035. doi: 10.1016/j.ijfatigue.2023.108035
    [24]
    Ding G, Yan Y, Si S, et al. Modified nonlinear cumulative damage model considering residual strength degradation and gear reliability analysis[J]. Quality and Reliability Engineering International, 2023, 39(5): 1720 − 1734. doi: 10.1002/qre.3294
  • Related Articles

    [1]ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240202001
    [2]ZHENG Wenjian, LI Zhengyang, WANG Xinghua, GONG Xuhui, YAN Dejun, LAI Shaobo, YANG Jianguo. Effect of heat conduction mode on microstructure and properties of 800 MPa class marine high strength steel fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 38-46. DOI: 10.12073/j.hjxb.20230605004
    [3]REN Xianghui, LIANG Wenqi, WANG Ruichao, HAN Shanguo, WU Wei. Effects of different welding modes on microstructure and mechanical properties of 316 stainless steel by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 79-85, 92. DOI: 10.12073/j.hjxb.20230413002
    [4]LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003
    [5]WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
    [6]FENG Yuehai, TANG Ronghua, LIU Siyu, CHEN Qi. Microstructures and mechanical properties of stainless steel component deposited with 308L wire by hot wire plasma arc additive manufacturing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 77-83. DOI: 10.12073/j.hjxb.20200512001
    [7]GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004
    [8]LIU Liming, HE Yajing, LI Zongyu, ZHANG Zhaodong. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 13-19. DOI: 10.12073/j.hjxb.20200806001
    [9]CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
    [10]WANG Xiaoguang, LIU Fencheng, FANG Ping, WU Shifeng. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 100-106. DOI: 10.12073/j.hjxb.2019400135
  • Cited by

    Periodical cited type(1)

    1. 魏守征,饶文姬,段庆阳,李志勇,张英乔. 背面焊缝激光重熔处理对Ti/Al高速FA-MIG焊接头组织性能的影响. 航空制造技术. 2024(19): 117-124 .

    Other cited types(0)

Catalog

    Article views (54) PDF downloads (18) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return