Advanced Search
CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
Citation: CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001

Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing

More Information
  • Received Date: August 17, 2019
  • Available Online: September 26, 2020
  • The austenitic stainless steel 316L was fabricated by high power MIG arc additive manufacturing and its microstructure evolution, mechanical properties and fracture behavior were investigated. Results show that there are columnar grains forming in the MIG arc additive manufacturing 316L. The microstructure consists of vermicular δ and σ phases within γ matrix. The δ distributed both at grain boundaries and in the grains can strengthen the steel. With the arc power increasing from 3 763 W to 8 400 W, δ phases decrease and σ phases increase, as well as grain size increases. That leads to the ultimate tensile strength decrease from 578 MPa to 533 MPa, yield strength decrease from 310 MPa to 235 MPa, elongation decrease from 53% to 44%, reduction of area decrease from 67% to 60%. A pronounced feature is that the fracture type transfers from trans-granular dimple fracture to inter-granular dimpled fracture at the arc power of 8 400 W.
  • Marshall P. Austenitic stainless steels: microstructure and mechanical properties[M]. Amsterdam: Elsevier, 1984.
    Wang H, Zhang S, Wang X. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese J Lasers, 2009, 36(12): 3204 − 3209. doi: 10.3788/CJL20093612.3204
    卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D pringting) technology[J]. Machine Building & Automation, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001
    Frazier W. Metal additive manufacturing: a review[J]. Journal of Materials Engineering & Performance, 2014, 23(6): 1917 − 1928.
    张海鸥, 王超, 胡帮友, 等. 金属零件直接快速制造技术及发展趋势[J]. 航空制造技术, 2010, 8: 43 − 46. doi: 10.3969/j.issn.1671-833X.2010.12.005

    Zhang Haiou, Wang Chao, Hu Bangyou. Direct rapid manufacturing technology for metal oarts and its development trends[J]. Aeronautical Manufacturing Technology, 2010, 8: 43 − 46. doi: 10.3969/j.issn.1671-833X.2010.12.005
    熊江涛, 耿海滨, 林鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, 493(23-24): 80 − 85.

    Xiong Jintao, Geng Haibin, Lin Xin,et al. Research status of wire and additire manufacture and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2015, 493(23-24): 80 − 85.
    李超, 朱胜, 沈灿铎, 等. 焊接快速成形技术的研究现状与发展趋势[J]. 中国表面工程, 2009, 22(3): 7 − 12. doi: 10.3969/j.issn.1007-9289.2009.03.002

    Li Chao, Zhu Sheng, Shen Canduo, et al. Present state and development trend of welding rapid forming technology[J]. China Surface Engineering, 2009, 22(3): 7 − 12. doi: 10.3969/j.issn.1007-9289.2009.03.002
    苗玉刚, 李春旺, 张鹏. 不锈钢旁路热丝等离子弧增材制造接头特性分析[J]. 焊接学报, 2018, 39(6): 35 − 38.

    Miao Yugang, Li Chunwang, Zhang Peng. Joint characteristics of stainless steel by pass-current wire-heating PAW on additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(6): 35 − 38.
    李雷, 于治水, 张培磊. TC4钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12): 37 − 43. doi: 10.12073/j.hjxb.2018390294

    Li Lei, Yu Zhishui, Zhang Peilei. Microstructure characteristics of wire and arc additive manufacturing of TC4 components[J]. Transactions of the China Welding Institution, 2018, 39(12): 37 − 43. doi: 10.12073/j.hjxb.2018390294
    Skiba T, Baufeld B, Biest O V D. Microstructure and mechanical properties of stainless steel component manufactured by shaped metal deposition[J]. ISIJ international, 2009, 49(10): 1588 − 1591. doi: 10.2355/isijinternational.49.1588
    Kevin H, Peter M. 3DPMD-Arc-based additive manufacturing with titanium powder as raw material[J]. China Welding, 2019, 28(1): 15 − 19.
    Xiong J, Zhang G. Adaptive control of deposited height in GMAW-based layer additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(4): 962 − 968. doi: 10.1016/j.jmatprotec.2013.11.014
    尹紫秋, 熊俊. 基于ACT匹配的GMA增材制造熔池形貌三维重建[J]. 焊接学报, 2019, 40(1): 49 − 52. doi: 10.12073/j.hjxb.2019400010

    Yin Ziqiu, Xiong Jun. Three-dimensional reconstruction of molten pool appearance in GMA additive manufacturing based on ACT stereo matching algorithm[J]. Transactions of the China Welding Institution, 2019, 40(1): 49 − 52. doi: 10.12073/j.hjxb.2019400010
    Katayama S, Fujimoto T, Matsunawa A. Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals (Materials, Metallurgy & Weldability)[J]. Transactions of Jwri, 1985, 14: 123 − 38.
    干勇, 田志凌, 董翰, 等. 中国材料工程大典. 第3卷, 钢铁材料工程[M]. 北京: 化学工业出版社, 2006.

Catalog

    Article views (370) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return