Citation: | LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003 |
高站起, 荆洪阳, 徐连勇, 等. 超级双相不锈钢多层多道焊接接头组织及腐蚀性能[J]. 焊接学报, 2019, 40(7): 143 − 148. doi: 10.12073/j.hjxb.2019400197
Gao Zhanqi, Jing Hongyang, Xu Lianyong, et al. Research on microstructure and corrosion behavior of multi-pass welded joints of hyper duplex stainless steel[J]. Transactions of the China Welding Institution, 2019, 40(7): 143 − 148. doi: 10.12073/j.hjxb.2019400197
|
黄瀚川, 徐连勇, 荆洪阳, 等. SAF2507超级双相不锈钢CMT + P熔滴过渡特性[J]. 焊接学报, 2019, 40(10): 127 − 136.
Huang Hanchuan, Xu Lianyong, Jing Hongyang, et al. Study on droplet transfer of CMT + P welding process in SAF2507 super duplex stainless steel[J]. Transactions of the China Welding Institution, 2019, 40(10): 127 − 136.
|
Ramkumar K D, Nikam P P, Duraisamy A, et al. Microstructure characterization and tensile properties of CMT-based wire plus arc additive manufactured ER2594[J]. Materials Characterization, 2020, 169: 110671. doi: 10.1016/j.matchar.2020.110671
|
Cui S, Shi Y, Cui Y, et al. The impact toughness of novel keyhole TIG welded duplex stainless steel joints[J]. Engineering Failure Analysis, 2018, 94: 226 − 231. doi: 10.1016/j.engfailanal.2018.08.009
|
谭华. 双相不锈钢焊缝组织演变与腐蚀行为研究[D]. 上海: 复旦大学, 2012.
Tan Hua. Study on microstructure evolution and corrosion behavior of duplex stainless steel welds [D]. Shanghai: Fudan University, 2012.
|
Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components–Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112 − 224. doi: 10.1016/j.pmatsci.2017.10.001
|
Lervg M, Srensen C, Robertstad A, et al. Additive manufacturing with superduplex stainless steel wire by CMT process[J]. Metals - Open Access Metallurgy Journal, 2020, 10(2): 272.
|
Hosseini V A, Wessman S, Hurtig K. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel[J]. Materials & Design, 2016, 98: 88 − 97.
|
Varbai B, Pickle T, Májlinger K. Effect of heat input and role of nitrogen on the phase evolution of 2205 duplex stainless steel weldment[J]. International Journal of Pressure Vessels and Piping, 2019, 176: 103952. doi: 10.1016/j.ijpvp.2019.103952
|
栗宏伟, 赵志毅, 薛润东. 热输入对SAF2507超级双相不锈钢焊接接头显微组织及硬度的影响[J]. 焊接学报, 2022, 43(2): 20 − 26.
Li Hongwei, Zhao Zhiyi, Xue Rundong. Effect of heat input on the microstructure and hardness of SAF2507 super duplex stainless steel welded joints[J]. Transactions of the China Welding Institution, 2022, 43(2): 20 − 26.
|
Zhang X, Zhou Q, Wang K, et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing[J]. Materials & Design, 2019, 166: 107611.
|
Davidson K P, Singamneni S. Magnetic characterization of selective laser-melted SAF 2507 duplex stainless steel[J]. JOM, 2017, 69(3): 569 − 574. doi: 10.1007/s11837-016-2193-6
|
Zhang X, Wang K, Zhou Q, et al. Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594)[J]. Materials Science & Engineering:A, 2019, 762: 138097.
|
Zhang D, Liu A, Yin B, et al. Effect of heat sources on microstructure and properties of duplex stainless steels fabricated by additive manufacturing[C]//Society of Photo-Optical Instrumentation Engineers Conference Series. SPIE, Nantong, China, 2021.
|
Zhang Y. A specially-designed super duplex stainless steel with balanced ferrite: austenite ratio fabricated via flux-cored wire arc additive manufacturing: microstructure evolution, mechanical properties and corrosion resistance[J]. Materials Science & Engineering: A, 2022, 854: 143809.
|
Singh J, Shahi A S. Metallurgical, impact and fatigue performance of electron beam welded duplex stainless steel joints[J]. Journal of Materials Processing Technology, 2019, 272: 137 − 148. doi: 10.1016/j.jmatprotec.2019.05.010
|
Ogawa T, Koseki T. Effect of composition profiles on metallurgy and corrosion behavior of duplex stainless teel weld metals[J]. Welding Research Supplement, 1989(5): 181 − 191.
|
Kannan A R, Shanmugam N S, Ramkumar K D. Studies on super duplex stainless steel manufactured by wire arc additive manufacturing[J]. Transactions of the Indian Institute of Metals, 2021, 74(7): 1673 − 1681. doi: 10.1007/s12666-021-02257-y
|
Hejripour F, Binesh F, Hebel M, et al. Thermal modeling and characterization of wire arc additive manufactured duplex stainless steel[J]. Journal of Materials Processing Technology, 2019, 272: 58 − 71. doi: 10.1016/j.jmatprotec.2019.05.003
|
Zhao Y, You J, Qin J, et al. Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint[J]. Materials Science & Engineering: A, 2022, 837: 142754. doi: 10.1016/j.msea.2022.142754
|
Yang L, Lu W, Liu Z, et al. Location-dependent microstructure and properties for plasma arc additively manufactured duplex stainless steel ER2209 wire[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6788 − 6800. doi: 10.1007/s11665-021-06005-7
|
Corradi M, Dischino A, Borri A, et al. A review of the use of stainless steel for masonry repair and reinforcement[J]. Construction and Building Materials, 2018, 181: 335 − 346. doi: 10.1016/j.conbuildmat.2018.06.034
|
Le V T, Mai D S. Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing[J]. Materials Letters, 2020, 271: 127791. doi: 10.1016/j.matlet.2020.127791
|
[1] | HONG Yuxiang, YING Qiluo, LIN Kai, WANG Kaiming, WANG Yaoqi. Arc welding molten pool image recognition based on attention mechanism and transfer learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 94-102. DOI: 10.12073/j.hjxb.20240112003 |
[2] | LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002 |
[3] | CHEN Chen, ZHOU Fangzheng, LI Chenglong, LIU Xinfeng, JIA Chuanbao, XU Yao. Prediction method of plasma arc welding molten pool melting state based on spatial and channel characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 30-38. DOI: 10.12073/j.hjxb.20220516001 |
[4] | GAO Changlin, SONG Yanli, ZUO Hongzhou, ZHANG Cheng. Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001 |
[5] | FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002 |
[6] | CHEN Yuquan, GAO Xiangdong. Neural network compensation for micro-gap weld detection by magneto-optical imaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 33-36. |
[7] | CHEN Zhenhua, SHI Yaowu, ZHAO Haiyan. Ultrasonic testing of spot weld based on spectrum analysis and artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 76-80. |
[8] | DI Xinjie, LI Wushen, BAI Shiwu, LIU Fangming. Metal magnetic memory signal recognition by neural network for welding crack[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 13-16. |
[9] | SHI Yu, FAN Ding, CHEN Jian-hong. Predication of properties of welded joints based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 73-76. |
[10] | PENG Pai, WU Lin, TIAN JIN-Song, WANG Xue-feng, FENG Ying-jun. Application of Neural Networks in Welding Parameters's Planning of Robots[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 39-42. |
1. |
高东,李永利,邓颖,周好斌. 旁路耦合电弧TIG焊原理及工艺研究. 热加工工艺. 2025(01): 65-69 .
![]() | |
2. |
孟美情,韩俭,朱瀚钊,梁哲滔,蔡养川,张欣,田银宝. 基于多丝电弧增材制造研究现状. 材料工程. 2025(05): 46-62 .
![]() | |
3. |
王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 .
![]() | |
4. |
李博洋,巴现礼,陈帅帅,徐国敏,刘黎明. 不同路径下的低碳钢三丝间接电弧增材制造组织与性能. 焊接技术. 2024(10): 1-6+145 .
![]() | |
5. |
张加恒,黄祎,郭顺,杨东青,闫德俊,李东,王克鸿. 超音频MIG辅助三丝电弧增材制造工艺研究. 电焊机. 2023(02): 104-110 .
![]() | |
6. |
吴涛,谭振,王立伟,梁志敏,汪殿龙. 异质双丝间接电弧增材制造Al-Mg-Cu合金组织与力学性能. 焊接学报. 2023(10): 64-70+136 .
![]() | |
7. |
朱强,姚屏,许斯帆,许可昱. 316L不锈钢电弧增材制造工艺研究. 精密成形工程. 2023(11): 164-170 .
![]() |