Advanced Search
REN Xianghui, LIANG Wenqi, WANG Ruichao, HAN Shanguo, WU Wei. Effects of different welding modes on microstructure and mechanical properties of 316 stainless steel by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 79-85, 92. DOI: 10.12073/j.hjxb.20230413002
Citation: REN Xianghui, LIANG Wenqi, WANG Ruichao, HAN Shanguo, WU Wei. Effects of different welding modes on microstructure and mechanical properties of 316 stainless steel by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 79-85, 92. DOI: 10.12073/j.hjxb.20230413002

Effects of different welding modes on microstructure and mechanical properties of 316 stainless steel by wire arc additive manufacturing

More Information
  • Received Date: April 12, 2023
  • Available Online: February 23, 2024
  • This study focused on the additive manufacturing of single-pass multi-layer thin-walled samples using 316 stainless steel. It explored three welding modes: cold metal transfer (CMT), cold metal transfer-pulse (CMT-P), and direct current-pulse (DC-P), and conducted a comparative analysis of the microstructure and mechanical properties of the samples. Under the three modes of formation, the resulting components exhibited no collapse or macroscopic porosity. The solidified structure consists predominantly of columnar dendritic crystals, along with a significant presence of secondary dendrites and cellular crystals. Upon conducting metallographic observation and utilizing electron back scatter diffraction (EBSD) technology, it was determined that the structure demonstrates a pronounced <001>//z texture. The average spacing of dendrites in the steady-state zone of the component exhibits variation based on the heat input across different welding modes, with the pattern being CMT < CMT-P < DC-P. The matrix structure was identified as γ-Fe(Cr0.19Fe0.7Ni0.11) using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis, while the interstitial network structure was found to be residual δ-Fe. In CMT-P mode, the component exhibits the highest strength, characterized by a yield strength of 237 MPa, a tensile strength of 555 MPa, and an average hardness value of 209 HV0.3. In the DC-P mode, the component exhibits the highest elongation at break, reaching 52%.

  • [1]
    Mark A, Hamid M, Nida N. An overview of modern metal additive manufacturing technology[J]. Journal of Manufacturing Processes, 2022, 84: 1001 − 1029. doi: 10.1016/j.jmapro.2022.10.060
    [2]
    Dong H K, Lu H Z, Zhao C, et al. Additive manufacturing of alloys and composites[J]. Materials, 2023, 16(3): 992 − 992. doi: 10.3390/ma16030992
    [3]
    Manu S, Sandeep R, Ankit T, et al. Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour[J]. Materials Chemistry and Physics, 2023, 294: 126988. doi: 10.1016/j.matchemphys.2022.126988
    [4]
    Zhang Q R, Guan Y C. Application of metal additive manufacturing in oral dentistry[J]. Current Opinion in Biomedical Engineering, 2023, 25: 100441. doi: 10.1016/j.cobme.2022.100441
    [5]
    苗玉刚, 王清龙, 李春旺, 等. 中厚板钛合金激光-CMT复合焊接工艺特性分析[J]. 焊接学报, 2022, 43(8): 42 − 47.

    Miao Yugang, Wang Qinglong, Li Chunwang, et al. Characterization of laser-CMT composite welding process for medium-thickness titanium alloy[J]. Transactions of the China Welding Institution, 2022, 43(8): 42 − 47.
    [6]
    Pan J J, He X X, Zhao P C, et al. Numerical analysis of typical droplets transfer mode in wire and arc additive manufacture process[J]. China Welding, 2020, 29(3): 44 − 53.
    [7]
    Laukik P R, Ravindra V T. Wire arc additive manufacturing: a comprehensive review and research directions[J]. Journal of Materials Engineering and Performance, 2021, 30(7): 4768 − 4791. doi: 10.1007/s11665-021-05871-5
    [8]
    余圣甫, 禹润缜, 何天英, 等. 电弧增材制造技术及其应用的研究进展[J]. 中国材料进展, 2021, 40(3): 198 − 209.

    Yu Shengfu, Yu Runzhen, He Tianying, et al. Wire arc additive manufacturing and its application: research progress[J]. Materials China, 2021, 40(3): 198 − 209.
    [9]
    Yang Qingfeng, Xia Cunjuan, Deng Yaqi, et al. Microstructure and mechanical properties of AlSi7Mg0.6 aluminum alloy fabricated by wire and arc additive manufacturing based on cold metal transfer(WAAMCMT)[J]. Materials, 2019, 12(16): 2525 − 2537. doi: 10.3390/ma12162525
    [10]
    周春东, 章晓勇, 彭勇, 等. CMT Cycle Step工艺参数对焊缝表面特征纹路及成形尺寸的影响[J]. 焊接学报, 2023, 44(5): 95 − 101.

    Zhou Chundong, Zhang Xiaoyong, Peng Yong, et al. Effect of CMT Cycle Step process parameters on weld surface characteristic texture and forming size[J]. Transactions of the China Welding Institution, 2023, 44(5): 95 − 101.
    [11]
    Peng M J, Liu H B, Liang Y, et al. CMT welding-brazing of al/steel dissimilar materials using cycle-step mode[J]. Journal of Materials Research and Technology, 2022, 18: 1267 − 1280. doi: 10.1016/j.jmrt.2022.03.043
    [12]
    Huan P C, Wang X N, Zhang Q Y, et al. Study on droplet transition behavior, bead geometric characteristics and formability of wire arc additively manufactured Inconel 718 alloy by using CMT MIX Synchro pulse process[J]. Journal of Materials Research and Technology, 2022, 17: 1831 − 1841. doi: 10.1016/j.jmrt.2022.01.153
    [13]
    Selvi S, Vishvaksenan A, Rajasekar E. Cold metal transfer (CMT) technology-An overview[J]. Defence Technology, 2018, 14(1): 28 − 44. doi: 10.1016/j.dt.2017.08.002
    [14]
    赵晓燕, 杨立军, 黄一鸣, 等. 药芯焊丝脉冲TIG电弧增材制造电弧特性研究[J]. 光谱学与光谱分析, 2021, 41(8): 2397 − 2403.

    Zhao Xiaoyan, Yang Lijun, Huang Yiming, et al. Study on arc characteristic of flux-cored wire pulse TIG arc additive manufacturing[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2397 − 2403.
    [15]
    朱兵钺, 林健, 雷永平, 等. 410马氏体不锈钢块体材料的冷金属过渡焊电弧增材制造与性能表征[J]. 材料导报, 2021, 293: 129579 − 129582.

    Zhu Bingyue, Lin Jian, Lei Yongping, et al. Preparation and characterization of martensitic stainless steel 410 block parts by CMT wire arc additive manufacturing[J]. Materials Reports, 2021, 293: 129579 − 129582.
    [16]
    Pramod R, Kumar SM, Kannan A R, et al. Fabrication of gas metal arc welding based wire plus arc additive manufactured 347 stainless steel structure: Behavioral analysis through experimentation and finite element method[J]. Metals and Materials International, 2022, 28: 307 − 321.
    [17]
    Zhang Y Q, Wu S J, Cheng F J. A duplex stainless steel (DSS) with striking tensile strength and corrosion resistance produced through wire arc-additive manufacturing (WAAM) using a newly developed flux-cored wire[J]. Materials Letters, 2022, 313: 131760 − 131764. doi: 10.1016/j.matlet.2022.131760
    [18]
    侯旭儒, 徐东安, 王艳杰, 等. 脉冲对电弧增材制造304不锈钢构件组织与性能的影响[J]. 焊接技术, 2021, 50(8): 6 − 10.

    Hou Xuru, Xu Dongan, Wang Yanjie, et al. Effect of pulse on microstructure and properties of 304 stainless steel fabricated by wire arc additive manufacture[J]. Welding Technology, 2021, 50(8): 6 − 10.
    [19]
    Saha S, Mukherjee M, Pal T K. Microstructure, texture, and mechanical property analysis of gas metal arc welded AISI 304 austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 2015, 24(3): 1125 − 1139. doi: 10.1007/s11665-014-1374-0
    [20]
    宋文鑫, 张红霞, 闫志峰, 等. MIG焊接304不锈钢电弧物理现象—焊缝形貌组织-力学性能的相关性研究[J]. 太原理工大学学报, 2022, 53(5): 800 − 806.

    Song Wenxin, Zhang Hongxia, Yan Zhifeng, et al. Research on the correlation of arc physical phenomenon—weld morphology and microstructure-mechanical properties of MIG welded 304 stainless steel[J]. Journal of Taiyuan University of Technology, 2022, 53(5): 800 − 806.
    [21]
    Inoue H, Koseki T, Ohkita S, et al. Formation mechanism of vermicular and lacy ferrite in austenitic stainless-steel weld metals[J]. Science and Technology of Welding and Joining, 2000, 5(6): 385 − 396. doi: 10.1179/136217100101538452
    [22]
    张正浩, 王传强, 齐恩语, 等. 核级高硅含钛不锈钢激光-电弧复合焊接工艺及接头组织性能[J]. 中国激光, 2021, 48(14): 81 − 91.

    Zhang Zhenghao, Wang Chuanqiang, Qi Enyu, et al. Laser-arc hybrid welding process and joint microstructure and properties of nuclear grade high silicon titanium-containing stainless steel[J]. Chinese Journal of Lasers, 2021, 48(14): 81 − 91.
    [23]
    崔鑫, 薛飞, 宋春男, 等. 激光金属沉积与冷金属过渡复合成形316L的组织与力学性能[J]. 焊接, 2021(4): 19 − 24.

    Cui Xin, Xue Fei, Song Chunnan, et al. Microstructure and mechanical properties of 316L composite formed by laser metal deposition and cold metal transfer[J]. Welding & Joining, 2021(4): 19 − 24.
    [24]
    Park G W, Shin S, Kim J Y, et al. Analysis of solidification microstructure and cracking mechanism of a matrix high-speed steel deposited using directed-energy deposition[J]. Journal of Alloys and Compounds, 2022, 907: 164523 − 164532. doi: 10.1016/j.jallcom.2022.164523
    [25]
    Chou C Y, Pettersson N H, Durga A, et al. Influence of solidification structure on austenite to martensite transformation in additively manufactured hot-work tool steels[J]. Acta Materialia, 2021, 215: 117044 − 117054. doi: 10.1016/j.actamat.2021.117044
    [26]
    Wang X, Liu C, Zhou Z, et al. In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations[J]. Journal of Materials Research and Technology, 2021, 13: 823 − 833.
  • Related Articles

    [1]ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240202001
    [2]REN Xianghui, MA Teng, WU Wei, HAN Shanguo. Microstructure and properties of 316L stainless steel parts fabricated by double wire CMT + P additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 96-103. DOI: 10.12073/j.hjxb.20231207001
    [3]LIU Wei, REN Zeliang, WANG Gang, XIU Yanfei, LI Yanqing, DOU Cunyin, GONG Limiao. A-TIG weld shaping and joint mechanical properties of austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 105-114. DOI: 10.12073/j.hjxb.20240524001
    [4]LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003
    [5]WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
    [6]MIAO Yugang, LIU Ji, ZHAO Yuyang, LI Chunwang, WANG Ziran, ZHANG Benshun. Microstructure and corrosion resistance analysis of aluminum/steel "arc+ friction stir" hybrid additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 41-48. DOI: 10.12073/j.hjxb.20220630001
    [7]CHANG Jinghuan, CAO Rui, YAN Yingjie. Microstructure and properties of titanium alloy/stainless steel joint by cold metal transfer joining technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 44-51. DOI: 10.12073/j.hjxb.20210114001
    [8]GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004
    [9]LIU Liming, HE Yajing, LI Zongyu, ZHANG Zhaodong. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 13-19. DOI: 10.12073/j.hjxb.20200806001
    [10]CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
  • Cited by

    Periodical cited type(2)

    1. 薛鹏,何鹏,龙伟民,宋闽. 稀土、Ga元素及其协同效应对无铅钎料组织和性能的影响. 焊接学报. 2021(04): 1-19+97 . 本站查看
    2. 吴洁,薛松柏,于志浩,Tan Cheeleong,孙华斌,徐勇. Nd对Sn-3.8Ag-0.7Cu/Cu焊点高温可靠性的影响. 焊接学报. 2021(07): 9-13+97-98 . 本站查看

    Other cited types(3)

Catalog

    Article views (210) PDF downloads (61) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return