Citation: | WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001 |
Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
|
刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151,159.
Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing technology of complex structure and high performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151,159.
|
Rodringues T A, DuarteV, MirandaR M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121 − 1132. doi: 10.3390/ma12071121
|
Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895 − 916. doi: 10.1080/02670836.2018.1455012
|
Chaurasia M, Sinha M K. Investigations on process parameters of wire arc additive manufacturing (WAAM): A review [M]. Advances in Manufacturing and Industrial Engineering, 2021, 86: 845 − 853.
|
Ventudini G, Montevecchi F, Bandini F, et al. Feature based three axes computer aided manufacturing software for wire arc additive manufacturing dedicated to thin walled components[J]. Additive Manufacturing, 2018, 22: 643 − 657. doi: 10.1016/j.addma.2018.06.013
|
Ding J, Colegrove P, Martina F, et al. Development of a laminar flow local shielding device for wire plus arc additive manufacture[J]. Journal of Materials Processing Technology, 2015, 226: 99 − 105. doi: 10.1016/j.jmatprotec.2015.07.005
|
He T, Yu S, Shi Y, et al. High-accuracy and high-performance WAAM propeller manufacture by cylindrical surface slicing method[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(11): 4773 − 4782. doi: 10.1007/s00170-019-04558-5
|
Yuan L, Ding D H, Pan Z X, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 454 − 464. doi: 10.1109/TII.2019.2935233
|
Posch G, Chladil K, Chladil H. Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries[J]. Welding in the World, 2017, 61(5): 873 − 882. doi: 10.1007/s40194-017-0474-5
|
Vishnukumar M, Pramod R, Kannan A R. Wire arc additive manufacturing for repairing aluminium structures in marine applications[J]. Materials Letters, 2021, 299: 112 − 116.
|
陈晓晖, 张述泉, 冉先喆, 等. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42 − 49.
Chen Xiaohui, Zhang Shuquan, Ran Xianzhe, et al. Effect of arc power on microstructure and mechanical properties of 316L austenitic stainless steel fabricated by MIG wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(5): 42 − 49.
|
Zhang X Y, Wang K H, Zhou Q, et al. System study of the formability, nitrogen behaviour and microstructure features of the CMT wire and arc additively manufactured high nitrogen Cr-Mn stainless steel[J]. Materials Today Communications, 2021, 27: 62 − 70.
|
Tanvir A N M, Ahsan M R U, Seo G, et al. Phase stability and mechanical properties of wire plus arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67: 80 − 94.
|
Ryan E M, Sabin T J, Watts J F, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology, 2018, 262: 577 − 584. doi: 10.1016/j.jmatprotec.2018.07.030
|
Derekar K S, Addison A, Joshi S S, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 311 − 331. doi: 10.1007/s00170-020-04946-2
|
Van D, Dinda G P, Park J, et al. Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing[J]. Materials Science & Engineering: A, 2020, 776: 53 − 64.
|
Yangfan W, Xizhang C, Chuanchu S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing[J]. Surface and Coatings Technology, 2019, 374: 116 − 123. doi: 10.1016/j.surfcoat.2019.05.079
|
Wu B T, Pan Z X, Ding D H, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160. doi: 10.1016/j.addma.2018.08.004
|
Yi H-J, Kim J-W, Kim Y-L, et al. Effects of cooling rate on the microstructure and tensile properties of wire-arc additive manufactured Ti-6Al-4V alloy[J]. Metals and Materials International, 2020, 26(8): 1235 − 1246. doi: 10.1007/s12540-019-00563-1
|
Geng H, Li J, Xiong J, et al. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy[J]. Science and Technology of Welding & Joining, 2016, 22(6): 472 − 483.
|
刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19.
Liu Liming, He Yajing, Li Zongyu, et al. Microstructure and properties of 316 stainless steel fabricated by wire arc additive manufacturing under different paths [J]. Transactions of the China Welding institution, 2020, 41 (12): 13 − 19.
|
Lockett H, Ding J, Williams S, et al. Design for wire plus Arc Additive Manufacture: design rules and build orientation selection [J]. Journal of Engineering Design, 2017, 28(7-9): 568 − 598.
|
Wang X, Wang A, Li Y. A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3813 − 3830. doi: 10.1007/s00170-019-03706-1
|
Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7(3): 275. doi: 10.3390/app7030275
|
Gu J L, Yang S L, Gao M J, et al. Influence of deposition strategy of structural interface on microstructures and mechanical properties of additively manufactured Al alloy[J]. Additive Manufacturing, 2020, 34: 135 − 148.
|
Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior[J]. Journal of Materials Processing Technology, 2021, 288: 116895. doi: 10.1016/j.jmatprotec.2020.116895
|
Zhong Y, Zheng Z Z, Li J J, et al. Fabrication of 316L nuclear nozzles on the main pipeline with large curvature by CMT wire arc additive manufacturing and self-developed slicing algorithm[J]. Materials Science & Engineering: A, 2021, 820: 262 − 276.
|
Chen J, Wei H, Zhang X, et al. Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing[J]. Materials & Design, 2021, 198(2): 109325.
|
Wang Z Q, Palmer T A, Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia, 2016, 110: 226 − 235. doi: 10.1016/j.actamat.2016.03.019
|
Duarte V R, Rodrigues T A, Schell N, et al. Hot forging wire and arc additive manufacturing (HF-WAAM)[J]. Additive Manufacturing, 2020, 35: 135 − 146.
|
Liu W Q, Jia C B, Guo M, et al. Compulsively constricted WAAM with arc plasma and droplets ejected from a narrow space[J]. Additive Manufacturing, 2019, 27: 109 − 117. doi: 10.1016/j.addma.2019.03.003
|
Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering: A, 2019, 751: 183 − 190. doi: 10.1016/j.msea.2019.02.078
|
Wang J F, Sun Q J, Wang H, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding[J]. Materials Science & Engineering:A, 2016, 676: 395 − 405.
|
Wu B, Pan Z, Ding D, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160.
|
Pramod R, Kumar S M, Kannan A R, et al. Fabrication of gas metal arc welding based wire plus arc additive manufactured 347 stainless steel structure: behavioral analysis through experimentation and finite element method[J]. Metals and Materials International, 2022, 28(1): 307 − 321. doi: 10.1007/s12540-021-01026-2
|
[1] | AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002 |
[2] | ZHANG Hua, GUO Qilong, ZHAO Changyu, LIN Sanbao, SHI Gongqi. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 1-5. DOI: 10.12073/j.hjxb.20190513001 |
[3] | YAN Chunyan, YUAN Yuan, ZHANG Kezhao, WU Lichao, WANG Baosen. Investigation on cold cracking susceptibility of X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 41-46. DOI: 10.12073/j.hjxb.2019400310 |
[4] | RUAN Ye, SU Jinlong, QIAO Jianyi, QIU Xiaoming, XING Fei. Effect of humidity on crack sensitivity of aluminum alloy weld joint and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 89-93. DOI: 10.12073/j.hjxb.2019400018 |
[5] | YAO Qianyu, DENG Caiyan, GONG Baoming, WANG Dongpo. The sensitivity analysis of parameters involved in engineering critical assessment for the submarine pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 41-44. |
[6] | ZHANG Jingqiang, YANG Jianguo, XUE Gang, WANG Jiajie, FANG Hongyuan. Hydrogen induced cracking sensibility of welded joint based on tensile test with hydrogen pre-charging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 89-92. |
[7] | ZHANG Qunbing, NIU Jing, ZHAO Pengfei, HUANG Yong, LI Zhigang, ZHANG Jianxun. Influence of preheating temperature on cold cracking sensitivity of 12Cr10Co3W2Mo heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 87-91. |
[8] | ZHANG Yuanjie, PENG Yun, MA Chengyong, PENG Xinna, TIAN Zhiling, LU Jiansheng. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 53-56. |
[9] | LAN Liangyun, QIU Chunlin, ZHAO Dewen, GAO Xiuhua. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 41-44. |
[10] | DU Yi, ZHANG Tian-hong, ZHANG Jun-xu. Analysis on welding cold crack sensibility of 10Ni8CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 93-96. |
1. |
刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
![]() | |
2. |
税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
![]() | |
3. |
刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
![]() | |
4. |
代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 .
![]() | |
5. |
王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
![]() | |
6. |
甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
![]() | |
7. |
陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
![]() | |
8. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
9. |
王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
![]() | |
10. |
张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 .
![]() |