Citation: | WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001 |
Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
|
刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151,159.
Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing technology of complex structure and high performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151,159.
|
Rodringues T A, DuarteV, MirandaR M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121 − 1132. doi: 10.3390/ma12071121
|
Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895 − 916. doi: 10.1080/02670836.2018.1455012
|
Chaurasia M, Sinha M K. Investigations on process parameters of wire arc additive manufacturing (WAAM): A review [M]. Advances in Manufacturing and Industrial Engineering, 2021, 86: 845 − 853.
|
Ventudini G, Montevecchi F, Bandini F, et al. Feature based three axes computer aided manufacturing software for wire arc additive manufacturing dedicated to thin walled components[J]. Additive Manufacturing, 2018, 22: 643 − 657. doi: 10.1016/j.addma.2018.06.013
|
Ding J, Colegrove P, Martina F, et al. Development of a laminar flow local shielding device for wire plus arc additive manufacture[J]. Journal of Materials Processing Technology, 2015, 226: 99 − 105. doi: 10.1016/j.jmatprotec.2015.07.005
|
He T, Yu S, Shi Y, et al. High-accuracy and high-performance WAAM propeller manufacture by cylindrical surface slicing method[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(11): 4773 − 4782. doi: 10.1007/s00170-019-04558-5
|
Yuan L, Ding D H, Pan Z X, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 454 − 464. doi: 10.1109/TII.2019.2935233
|
Posch G, Chladil K, Chladil H. Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries[J]. Welding in the World, 2017, 61(5): 873 − 882. doi: 10.1007/s40194-017-0474-5
|
Vishnukumar M, Pramod R, Kannan A R. Wire arc additive manufacturing for repairing aluminium structures in marine applications[J]. Materials Letters, 2021, 299: 112 − 116.
|
陈晓晖, 张述泉, 冉先喆, 等. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42 − 49.
Chen Xiaohui, Zhang Shuquan, Ran Xianzhe, et al. Effect of arc power on microstructure and mechanical properties of 316L austenitic stainless steel fabricated by MIG wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(5): 42 − 49.
|
Zhang X Y, Wang K H, Zhou Q, et al. System study of the formability, nitrogen behaviour and microstructure features of the CMT wire and arc additively manufactured high nitrogen Cr-Mn stainless steel[J]. Materials Today Communications, 2021, 27: 62 − 70.
|
Tanvir A N M, Ahsan M R U, Seo G, et al. Phase stability and mechanical properties of wire plus arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67: 80 − 94.
|
Ryan E M, Sabin T J, Watts J F, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology, 2018, 262: 577 − 584. doi: 10.1016/j.jmatprotec.2018.07.030
|
Derekar K S, Addison A, Joshi S S, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 311 − 331. doi: 10.1007/s00170-020-04946-2
|
Van D, Dinda G P, Park J, et al. Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing[J]. Materials Science & Engineering: A, 2020, 776: 53 − 64.
|
Yangfan W, Xizhang C, Chuanchu S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing[J]. Surface and Coatings Technology, 2019, 374: 116 − 123. doi: 10.1016/j.surfcoat.2019.05.079
|
Wu B T, Pan Z X, Ding D H, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160. doi: 10.1016/j.addma.2018.08.004
|
Yi H-J, Kim J-W, Kim Y-L, et al. Effects of cooling rate on the microstructure and tensile properties of wire-arc additive manufactured Ti-6Al-4V alloy[J]. Metals and Materials International, 2020, 26(8): 1235 − 1246. doi: 10.1007/s12540-019-00563-1
|
Geng H, Li J, Xiong J, et al. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy[J]. Science and Technology of Welding & Joining, 2016, 22(6): 472 − 483.
|
刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19.
Liu Liming, He Yajing, Li Zongyu, et al. Microstructure and properties of 316 stainless steel fabricated by wire arc additive manufacturing under different paths [J]. Transactions of the China Welding institution, 2020, 41 (12): 13 − 19.
|
Lockett H, Ding J, Williams S, et al. Design for wire plus Arc Additive Manufacture: design rules and build orientation selection [J]. Journal of Engineering Design, 2017, 28(7-9): 568 − 598.
|
Wang X, Wang A, Li Y. A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3813 − 3830. doi: 10.1007/s00170-019-03706-1
|
Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7(3): 275. doi: 10.3390/app7030275
|
Gu J L, Yang S L, Gao M J, et al. Influence of deposition strategy of structural interface on microstructures and mechanical properties of additively manufactured Al alloy[J]. Additive Manufacturing, 2020, 34: 135 − 148.
|
Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior[J]. Journal of Materials Processing Technology, 2021, 288: 116895. doi: 10.1016/j.jmatprotec.2020.116895
|
Zhong Y, Zheng Z Z, Li J J, et al. Fabrication of 316L nuclear nozzles on the main pipeline with large curvature by CMT wire arc additive manufacturing and self-developed slicing algorithm[J]. Materials Science & Engineering: A, 2021, 820: 262 − 276.
|
Chen J, Wei H, Zhang X, et al. Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing[J]. Materials & Design, 2021, 198(2): 109325.
|
Wang Z Q, Palmer T A, Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia, 2016, 110: 226 − 235. doi: 10.1016/j.actamat.2016.03.019
|
Duarte V R, Rodrigues T A, Schell N, et al. Hot forging wire and arc additive manufacturing (HF-WAAM)[J]. Additive Manufacturing, 2020, 35: 135 − 146.
|
Liu W Q, Jia C B, Guo M, et al. Compulsively constricted WAAM with arc plasma and droplets ejected from a narrow space[J]. Additive Manufacturing, 2019, 27: 109 − 117. doi: 10.1016/j.addma.2019.03.003
|
Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering: A, 2019, 751: 183 − 190. doi: 10.1016/j.msea.2019.02.078
|
Wang J F, Sun Q J, Wang H, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding[J]. Materials Science & Engineering:A, 2016, 676: 395 − 405.
|
Wu B, Pan Z, Ding D, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160.
|
Pramod R, Kumar S M, Kannan A R, et al. Fabrication of gas metal arc welding based wire plus arc additive manufactured 347 stainless steel structure: behavioral analysis through experimentation and finite element method[J]. Metals and Materials International, 2022, 28(1): 307 − 321. doi: 10.1007/s12540-021-01026-2
|
[1] | CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001 |
[2] | FANG Disheng, FAN Yuanyuan, HUANG Ruisheng, XU Fujia, PEI Liang, LI Jiashi. Microstructure and properties of thick 5A06 aluminum alloy by 10 kW level oscillated laser welding at vertical up position[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 68-76. DOI: 10.12073/j.hjxb.20230614005 |
[3] | TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125 |
[4] | CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei. Analysis on Influencing Mechanism of Periodical Ultrasound on Formation of TIG Weld of Aluminum Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 9-12. |
[5] | HAN Yongquan, HONG Haitao, SHI Zengjie, YAO Qinghu. Mechanism of weld formation in laser beam-variable polarity plasma arc hybrid heating source welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 5-8. |
[6] | YAN Keng, GAO Lihua, YANG Gang, XIAO Hailin. Effect of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 54-57,62. |
[7] | YANG Jing, LI Xiaoyan, GONG Shuili, CHEN Li, XU Fei. Characteristics of aluminium-lithium alloy joint formed by YAG-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 83-86. |
[8] | GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73. |
[9] | WANG Xuyou, WANG Wei, LIN Shangyang. Effect of welding parameter on weld penetration in laser-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 13-16. |
[10] | YAO Wei, GONG Shui-li, CHEN Li. Effect of energy parameters on weld shaping for hybrid laser plasma welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 81-84. |