Advanced Search
WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
Citation: WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001

Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing

More Information
  • Received Date: May 23, 2022
  • Available Online: October 09, 2023
  • The 316L stainless steel component was manufactured by speed arc wire arc additive manufacturing(WAAM) under constant current. The formation of the component was explored, and the microstructure and mechanical properties at different regions of the component was compared under the scanning electron microscopes and the metallurgical microscope. The results indicate that the primary dendrites(PD) transform from acicular dendrites, strip dendrites to columnar dendrites along the deposition direction in single layer. The dimensions of secondary dendrites(SD) increases with the deposition height. The secondary dendrite arms sizes(SDAS) are 11.54, 12.50 μm and 15.52 μm at the bottom, middle and top of the sample, which are mainly affected by heat accumulation. In addition, the tensile strength of the sample along the deposition direction and scanning direction is 517 MPa and 527 MPa,exceeding the strength of forging. The percentage elongation after fracture of the sample is 22.5% and 15.0%. And the fracture mode of tensile samples is ductile fracture. However, the plasticity and the ductility of samples adopted along the scanning direction is better than that of the samples in the deposition direction.
  • Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020
    刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151,159.

    Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing technology of complex structure and high performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151,159.
    Rodringues T A, DuarteV, MirandaR M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121 − 1132. doi: 10.3390/ma12071121
    Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895 − 916. doi: 10.1080/02670836.2018.1455012
    Chaurasia M, Sinha M K. Investigations on process parameters of wire arc additive manufacturing (WAAM): A review [M]. Advances in Manufacturing and Industrial Engineering, 2021, 86: 845 − 853.
    Ventudini G, Montevecchi F, Bandini F, et al. Feature based three axes computer aided manufacturing software for wire arc additive manufacturing dedicated to thin walled components[J]. Additive Manufacturing, 2018, 22: 643 − 657. doi: 10.1016/j.addma.2018.06.013
    Ding J, Colegrove P, Martina F, et al. Development of a laminar flow local shielding device for wire plus arc additive manufacture[J]. Journal of Materials Processing Technology, 2015, 226: 99 − 105. doi: 10.1016/j.jmatprotec.2015.07.005
    He T, Yu S, Shi Y, et al. High-accuracy and high-performance WAAM propeller manufacture by cylindrical surface slicing method[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(11): 4773 − 4782. doi: 10.1007/s00170-019-04558-5
    Yuan L, Ding D H, Pan Z X, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 454 − 464. doi: 10.1109/TII.2019.2935233
    Posch G, Chladil K, Chladil H. Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries[J]. Welding in the World, 2017, 61(5): 873 − 882. doi: 10.1007/s40194-017-0474-5
    Vishnukumar M, Pramod R, Kannan A R. Wire arc additive manufacturing for repairing aluminium structures in marine applications[J]. Materials Letters, 2021, 299: 112 − 116.
    陈晓晖, 张述泉, 冉先喆, 等. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42 − 49.

    Chen Xiaohui, Zhang Shuquan, Ran Xianzhe, et al. Effect of arc power on microstructure and mechanical properties of 316L austenitic stainless steel fabricated by MIG wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(5): 42 − 49.
    Zhang X Y, Wang K H, Zhou Q, et al. System study of the formability, nitrogen behaviour and microstructure features of the CMT wire and arc additively manufactured high nitrogen Cr-Mn stainless steel[J]. Materials Today Communications, 2021, 27: 62 − 70.
    Tanvir A N M, Ahsan M R U, Seo G, et al. Phase stability and mechanical properties of wire plus arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67: 80 − 94.
    Ryan E M, Sabin T J, Watts J F, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology, 2018, 262: 577 − 584. doi: 10.1016/j.jmatprotec.2018.07.030
    Derekar K S, Addison A, Joshi S S, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 311 − 331. doi: 10.1007/s00170-020-04946-2
    Van D, Dinda G P, Park J, et al. Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing[J]. Materials Science & Engineering: A, 2020, 776: 53 − 64.
    Yangfan W, Xizhang C, Chuanchu S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing[J]. Surface and Coatings Technology, 2019, 374: 116 − 123. doi: 10.1016/j.surfcoat.2019.05.079
    Wu B T, Pan Z X, Ding D H, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160. doi: 10.1016/j.addma.2018.08.004
    Yi H-J, Kim J-W, Kim Y-L, et al. Effects of cooling rate on the microstructure and tensile properties of wire-arc additive manufactured Ti-6Al-4V alloy[J]. Metals and Materials International, 2020, 26(8): 1235 − 1246. doi: 10.1007/s12540-019-00563-1
    Geng H, Li J, Xiong J, et al. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy[J]. Science and Technology of Welding & Joining, 2016, 22(6): 472 − 483.
    刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19.

    Liu Liming, He Yajing, Li Zongyu, et al. Microstructure and properties of 316 stainless steel fabricated by wire arc additive manufacturing under different paths [J]. Transactions of the China Welding institution, 2020, 41 (12): 13 − 19.
    Lockett H, Ding J, Williams S, et al. Design for wire plus Arc Additive Manufacture: design rules and build orientation selection [J]. Journal of Engineering Design, 2017, 28(7-9): 568 − 598.
    Wang X, Wang A, Li Y. A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3813 − 3830. doi: 10.1007/s00170-019-03706-1
    Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7(3): 275. doi: 10.3390/app7030275
    Gu J L, Yang S L, Gao M J, et al. Influence of deposition strategy of structural interface on microstructures and mechanical properties of additively manufactured Al alloy[J]. Additive Manufacturing, 2020, 34: 135 − 148.
    Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior[J]. Journal of Materials Processing Technology, 2021, 288: 116895. doi: 10.1016/j.jmatprotec.2020.116895
    Zhong Y, Zheng Z Z, Li J J, et al. Fabrication of 316L nuclear nozzles on the main pipeline with large curvature by CMT wire arc additive manufacturing and self-developed slicing algorithm[J]. Materials Science & Engineering: A, 2021, 820: 262 − 276.
    Chen J, Wei H, Zhang X, et al. Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing[J]. Materials & Design, 2021, 198(2): 109325.
    Wang Z Q, Palmer T A, Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia, 2016, 110: 226 − 235. doi: 10.1016/j.actamat.2016.03.019
    Duarte V R, Rodrigues T A, Schell N, et al. Hot forging wire and arc additive manufacturing (HF-WAAM)[J]. Additive Manufacturing, 2020, 35: 135 − 146.
    Liu W Q, Jia C B, Guo M, et al. Compulsively constricted WAAM with arc plasma and droplets ejected from a narrow space[J]. Additive Manufacturing, 2019, 27: 109 − 117. doi: 10.1016/j.addma.2019.03.003
    Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering: A, 2019, 751: 183 − 190. doi: 10.1016/j.msea.2019.02.078
    Wang J F, Sun Q J, Wang H, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding[J]. Materials Science & Engineering:A, 2016, 676: 395 − 405.
    Wu B, Pan Z, Ding D, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160.
    Pramod R, Kumar S M, Kannan A R, et al. Fabrication of gas metal arc welding based wire plus arc additive manufactured 347 stainless steel structure: behavioral analysis through experimentation and finite element method[J]. Metals and Materials International, 2022, 28(1): 307 − 321. doi: 10.1007/s12540-021-01026-2
  • Related Articles

    [1]BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001
    [2]WANG Dongpo, LIU Kaiyue, DENG Caiyan, GONG Baoming, WU Shipin, XIAO Na. Effects of PWHT on the impact toughness and fracture toughness of the weld metal under restraint welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 63-67, 78. DOI: 10.12073/j.hjxb.20190914001
    [3]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [4]SHEN Yu, WAN Xiangliang, LIU Yu, LI Guangqiang, WU Kaiming. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 55-62. DOI: 10.12073/j.hjxb.2019400209
    [5]LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96.
    [6]WU Bingzhi, JING Wen, XU Yujun, SUN Jingtao, WANG Xuyou. Analysis on microstructure and impact absorbed energy of 960 MPa deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 77-80.
    [7]DU Bing, SUN Fenglian, XU Yujun, LI Xiaoyu, LÜ Xiaochun, QIN Jian. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 1-4.
    [8]HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71.
    [9]LIANG Guoli, YANG Shanwu, WU Huibin, LIU Xueli. Impact toughness of simulated CGHAZ with high heat input for adding trace Zr oil tank steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 85-88.
    [10]XUE Gang, ZHAO Fuchen, JING Yanhong, NIU Jicheng, ZHANG Yonghui, GAI Dengyu. Effect of carbon on impact toughness of metal deposited with high strength austenite electrodes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 89-92.
  • Cited by

    Periodical cited type(1)

    1. 何琼,王红鸿,王杨文,张富伟,李晓晨. 超低温用高锰奥氏体钢熔池凝固行为及特征. 焊接学报. 2023(09): 60-66+132-133 . 本站查看

    Other cited types(0)

Catalog

    Article views (228) PDF downloads (55) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return