Citation: | YAO Zongxiang, LIU Yikai, ZHOU Yang, WANG Gang, YIN Limeng, LI Hongju, CAI Jiao. Interfacial reaction at Cu-core heterogenous solder joints and its effects on mechanical properties during isothermal aging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 51-58. DOI: 10.12073/j.hjxb.20231205003 |
Ni/Cu-core + Solder/Cu heterogenous Cu-core solder joints (Ni-Cu Cu-core joints) were subjected to aging experiments at 100 ℃ for 0 h, 48 h, 120 h, and 360 h, respectively. The microstructure evolution of interfacial intermetallic compound (IMC), tensile properties and fracture behavior of Ni-Cu Cu-core joints were investigated. The results show that, at as-reflowed joints, the ternary (Cu,Ni)6Sn5 phases are formed at the Ni/Solder and Solder/Cu-core interface and the Cu6Sn5 phases are formed at the Solder/Cu interface in Ni-Cu Cu-core joints. Interfacial reaction occurs at Solder/Ni interfaces in Ni-Cu Cu-core joints by Cu atoms diffusing to the Ni base through solder. The IMC layers are flat, continuous, and mainly serrated at all interfaces. During the isothermal aging, the thicknesses of the IMC layers monotonically increase with increasing aging time and the interface growth behavior is mainly controlled by diffusion. At the same aging conditions, the thicknesses of the IMC layers on the near Cu base side are greater than that on the near Ni base side, respectively. The tensile strength of Ni-Cu joints is slightly higher than that of Cu/Cu-core + Solder/Cu (Cu-Cu) joints. The tensile strength of Ni-Cu and Cu-Cu solder joints decreases with aging time prolonged, and the fracture mode is mainly ductile brittle mixed fracture. The fracture location mainly occurs at the bulk solder with larger thickness of IMC layer near the Cu base side. With the increase of the aging time, the fracture location tends to be closer to the IMC layer near the Cu base side. Ni instead of Cu as the matrix can slow down the growth rate of the interface layer, and improve the reliability of Cu-core solder joints.
[1] |
王小伟, 王凤江. Sn-58Bi微焊点组织与力学性能的尺寸效应行为[J]. 焊接学报, 2023, 44(12): 70 − 74. doi: 10.12073/j.hjxb.20230613008
Wang Xiaowei, Wang Fengjiang. Size effect behavior of microstructure and mechanical properties in Sn-58Bi micro solder joints[J]. Transactions of the China Welding Institution, 2023, 44(12): 70 − 74. doi: 10.12073/j.hjxb.20230613008
|
[2] |
杨晓军, 李晓光, 贺定勇, 等. 环氧基Sn-Bi焊膏的焊点热稳定性[J]. 北京工业大学学报, 2025, 51(2): 140 − 147.
Yang Xiaojun, Li Xiaoguang, He Dingyong, et al. Study on the thermal stability of solder joints of epoxy-based Sn-Bi solder paste[J]. Journal of Beijing University of Technology, 2025, 51(2): 140 − 147.
|
[3] |
周敏波, 赵星飞, 陈明强, 等. 电子封装跨尺度凸点结构Sn3.0Ag0.5Cu/Cu微互连焊点界面IMC生长与演化及力学行为的尺寸效应[J]. 机械工程学报, 2022, 58(2): 259 − 268. doi: 10.3901/JME.2022.02.259
Zhou Minbo, Zhao Xingfei, Chen Mingqiang, et al. Size effects of growth and evolution of interfacial intermetallic compound and the mechanical behavior of bump structure Sn3.0Ag0.5Cu/Cu cross-scale joints in electronic packages[J]. Journal of Mechanical Engineering, 2022, 58(2): 259 − 268. doi: 10.3901/JME.2022.02.259
|
[4] |
Yao Z X, Jiang S, Yin L M, et al. Effects of joint height on the interfacial microstructure and mechanical properties of Cu-cored SAC305 solder joints[J]. Journal of Electronic Materials, 2020, 49(9): 5391 − 5398. doi: 10.1007/s11664-020-08273-w
|
[5] |
谢俊, 黄春跃, 梁颖, 等. 三维堆叠封装TSV互连结构热扭耦合与优化[J]. 电子元件与材料, 2023, 42(9): 1129 − 1135.
Xie Jun, Huang Chunyue, Liang Ying, et al. Analysis and optimization of thermal-torsional coupling stress of 3D stacked packaged TSV interconnect structure[J]. Electronic Components and Materials, 2023, 42(9): 1129 − 1135.
|
[6] |
Song R W, Fleshman C J, Wu Z Y, et al. Increasing mechanical strength and refining grains of Cu-core solder joints with pressurized bonding[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 22966 − 22972. doi: 10.1007/s10854-020-04824-3
|
[7] |
Yao Z X, Zhang Y, Ling D Y, et al. Effect of multi-walled carbon nanotubes on the microstructure and properties of Sn-58Bi solder alloys[J]. Journal of Adhesion Science and Technology, 2023, 38(7): 1 − 13.
|
[8] |
张欣, 秦俊虎, 龙登成, 等. 高银系 Sn-Ag-Cu/Cu界面金属间化合物生长行为[J]. 焊接, 2024(3): 38 − 46. doi: 10.12073/j.hj.20220419001
Zhang Xin, Qin Junhu, Long Dengcheng, et al. Growth behavior of Sn-Ag-Cu/Cu intermetallic compounds in high silver series[J]. Welding & Joining, 2024(3): 38 − 46. doi: 10.12073/j.hj.20220419001
|
[9] |
张贺, 冯佳运, 丛森, 等. 62Sn36Pb2Ag组装焊点长期贮存界面化合物生长动力学及寿命预测[J]. 工程科学学报, 2023, 45(3): 400 − 406.
Zhang He, Feng Jiayun, Cong Sen, et al. Long-term storage life prediction and growth kinetics of intermetallic compounds in 62Sn36Pb2Ag solder joints[J]. Chinese Journal of Engineering, 2023, 45(3): 400 − 406.
|
[10] |
Jeong H, Lee C J, Kim J H, et al. Electromigration behavior of Cu core solder joints under high current density[J]. Electronic Materials Letters, 2020(4): 2641 − 2647.
|
[11] |
Jeong H, Lee C J, Min K D, et al. Mechanical properties of Cu-core solder balls with ENEPIG surface finish[J]. Research Policy: A Journal Devoted to Research Policy, Research Management and Planning, 2020, 49(10): 6073 − 6079.
|
[12] |
Fleshman C, Song R W, Tsai S Y, et al. Phase identification and interface evolution of ENIG/Cu-core SAC305/ENIG solder joints after the thermal-electrical coupling reliability test[J]. Materials Letters, 2020, 275: 128104. doi: 10.1016/j.matlet.2020.128104
|
[13] |
C M Chen, H C Lin. Interfacial reactions and mechanical properties of ball-grid-array solder joints using Cu-cored solder balls[J]. Journal of Electronic Materials, 2006, 35(11): 1937 − 1947. doi: 10.1007/s11664-006-0297-4
|
[14] |
Tian Y, Liu X, Chow J, et al. Comparison of Sn-Ag-Cu solder alloy intermetallic compound growth under different thermal excursions for fine-pitch flip-chip assemblies[J]. Journal of Electronic Materials, 2013, 42(8): 2724 − 2731. doi: 10.1007/s11664-013-2639-3
|
[15] |
杨蔚然, 季童童, 丁毓, 等. 热老化与热循环条件下Bi对Sn-1.0Ag-0.5Cu无铅焊点界面组织与性能的影响[J]. 焊接学报, 2022, 43(11): 157 − 162. doi: 10.12073/j.hjxb.20220709003
Yang Weiran, Ji Tongtong, Ding Yu, et al. Effect of Bi addition on interfacial microstructures and properties of Sn-1.0Ag-0.5Cu Pb-free solder joints during isothermal aging and thermal cycling[J]. Transactions of the China Welding Institution, 2022, 43(11): 157 − 162. doi: 10.12073/j.hjxb.20220709003
|
[16] |
谢仕芳, 韦习成, 鞠国魁, 等. Sn3.0Ag0.5Cu0.05Cr/Cu焊点界面IMC层热时效形貌及生长行为研究[J]. 稀有金属材料与工程, 2015, 44(9): 2234 − 2239.
Xie Shifang, Wei Xicheng, Ju Guokui, et al. Interfacial IMC layer morphology and growth behavior of Sn3.0Ag0.5Cu0.05Cr/Cu solder joints during isothermal aging[J]. Rare Metal Materials and Engineering, 2015, 44(9): 2234 − 2239.
|
[17] |
Somidin F, Mcdonald S D, Ye X, et al. Reducing cracking in solder joint interfacial Cu6Sn5 with modified reflow profile[J]. Transactions of the Japan Institute of Electronics Packaging, 2020, 13: E19-004-1-E19-004-11.
|
[18] |
李霞, 孙凤莲, 刘洋, 等. SAC-Bi-Ni焊点抗热冲击及抗热时效性能研究[J]. 中国体视学与图像分析, 2012, 17(4): 341 − 347.
Li Xia, Sun Fenglian, Liu Yang, et al. Thermal shock and thermal aging performance of SAC-Bi-Ni solder joint[J]. Chinese Journal of Stereology and Image Analysis, 2012, 17(4): 341 − 347.
|
1. |
魏守征,饶文姬,段庆阳,李志勇,张英乔. 背面焊缝激光重熔处理对Ti/Al高速FA-MIG焊接头组织性能的影响. 航空制造技术. 2024(19): 117-124 .
![]() |