Advanced Search
GU Ningjie, WU Hao, MAO Xiaodong, SONG Xiaoyu, ZOU Liying, DONG Xueguang, SHI Xiaocheng. Effect of micro-alloying elements modification on the microstructure and properties of TIG welded joints of AlMg4.3Mn0.6Cr0.12-H321 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 127-136. DOI: 10.12073/j.hjxb.20231204003
Citation: GU Ningjie, WU Hao, MAO Xiaodong, SONG Xiaoyu, ZOU Liying, DONG Xueguang, SHI Xiaocheng. Effect of micro-alloying elements modification on the microstructure and properties of TIG welded joints of AlMg4.3Mn0.6Cr0.12-H321 alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 127-136. DOI: 10.12073/j.hjxb.20231204003

Effect of micro-alloying elements modification on the microstructure and properties of TIG welded joints of AlMg4.3Mn0.6Cr0.12-H321 alloy

More Information
  • Received Date: December 03, 2023
  • Available Online: March 05, 2025
  • Tungsten inert gas (TIG) welding tests were conducted on AlMg4.3Mn0.6Cr0.12-H321 alloy with varied micro-alloying elements using ER5B71 filler wire. The influence of micro-alloying elements Zr, Er, and Sc on the microstructure, microhardness, and mechanical properties of welded joints was systematically investigated. The results indicate that the base material exhibits a deformed band structure, while the weld zone exhibits an equiaxed solidification microstructure. The addition of micro-alloying elements Zr, Er, and Sc forms nanoscale precipitates in the matrix, which effectively pin dislocations and inhibit alloy recrystallization. Compared with adding Zr element alone, adding Zr, Er, or Zr, Sc elements can more effectively suppress recrystallization behavior in the weld heat-affected zone (HAZ) and reduce base material softening during welding. All five groups of joints show W-shaped symmetrical microhardness distributions along the weld centerline, reaching minimum values in the HAZ. Correspondingly, tensile samples all fractured in the HAZ. The butt joint strength gradually increases with the variety and content of micro-alloying elements. When the Er content is 0.35%, the samples achieve the tensile strength of 274 MPa with a joint efficiency of 83.3%. The Zr-Sc co-doped samples (#5) achieve the maximum tensile strength of 293 MPa, corresponding to a joint efficiency of 89.7%.

  • [1]
    朱达新, 唐菊萍. 5083铝合金TIG焊接工艺研究[J]. 材料研究与应用, 2022, 16(3): 449 − 454.

    Zhu Daxin, Tang Juping. Study on TIG welding process of 5083 aluminum alloy[J]. Materials Research and Application, 2022, 16(3): 449 − 454.
    [2]
    王家威, 吴巍, 马月婷, 等. 5083铝合金MIG焊接头微观组织与力学性能[J]. 焊接, 2022(11): 20 − 28. doi: 10.12073/j.hj.20220112002

    Wang Jiawei, Wu Wei, Ma Yueting, et al. Study on TIG welding process of 5083 aluminum alloy,[J]. Welding & Joining, 2022(11): 20 − 28. doi: 10.12073/j.hj.20220112002
    [3]
    高翔, 许祥平, 刘兆龙, 等. 厚板5083铝合金MIG焊工艺与性能研究[J]. 江苏科技大学学报(自然科学版), 2024, 38(4): 36 − 42.

    Gao Xiang, Xu Xiangping, Liu Zhaolong, et al. Research on MIG welding process and performance of thick plate 5083 aluminum alloy[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2024, 38(4): 36 − 42.
    [4]
    方远方, 张华. 厚板5083铝合金搅拌摩擦焊接头沿厚度方向组织与力学性能[J]. 机械工程学报, 2022, 58(4): 94 − 101. doi: 10.3901/JME.2022.04.094

    Fang Yuanfang, Zhang Hua. Microstructure and mechanical properties for thick plate 5083 aluminum alloy friction stir welding joint along the thickness direction[J]. Journal of Mechanial Engineering, 2022, 58(4): 94 − 101. doi: 10.3901/JME.2022.04.094
    [5]
    庞凌志, 陆泽鹏, 苏天, 等. Mg、Mn成分优化对5083铝合金组织和性能的影响[J]. 有色金属工程, 2023, 13(1): 57 − 65. doi: 10.3969/j.issn.2095-1744.2023.01.007

    Pang Lingzhi, Lu Zepeng, Su Tian, et al. Effect of Mg and Mn composition optimization on microstructure and properties of 5083 aluminum alloy[J]. Nonferrous Metals Engineering, 2023, 13(1): 57 − 65. doi: 10.3969/j.issn.2095-1744.2023.01.007
    [6]
    王华春, 韦孙飞, 何建贤, 等. Cr含量对5083高镁铝合金组织和性能的影响[J]. 轻合金加工技术, 2020, 48(3): 17 − 21.

    Wang Huachun, Wei Sunfei, He Jianxian, et al. Effect of Cr content on microstructure and properties of 5083 aluminum alloy with high magnesium[J]. Light Alloy Fabrication Technology, 2020, 48(3): 17 − 21.
    [7]
    Tamasgavabari R, Ebrahimi A, Abbasi S M, et al. Effect of harmonic vibration during gas metal arc welding of AA-5083 aluminum alloy on the formation and distribution of intermetallic compounds[J]. Journal of Manufacturing Processes, 2019, 49: 413 − 422.
    [8]
    Zhu C, Tang X, He Y, et al. Effect of preheating on the defects and microstructure in NG-GMA welding of 5083 Al-alloy[J]. Journal of Materials Processing Technology, 2018, 251: 214 − 224. doi: 10.1016/j.jmatprotec.2017.08.037
    [9]
    张欣萌, 高士康, 李高辉, 等. 6005A-T6铝合金双轴肩搅拌摩擦焊接头疲劳性能分析[J]. 焊接学报, 2023, 44(9): 30 − 36. doi: 10.12073/j.hjxb.20221119001

    Zhang Xinmeng, Gao Shikang, Li Gaohui, et al. Study on the fatigue performance of bobbin tool friction stir welding of 6005A-T6 aluminum alloy[J]. Transactions of the China Welding Institution, 2023, 44(9): 30 − 36. doi: 10.12073/j.hjxb.20221119001
    [10]
    尹玉环, 曾才有, 高焓, 等. 热处理对2219铝合金双频复合脉冲TIG焊接头组织演变及力学性能影响[J]. 焊接学报, 2022, 43(4): 42 − 49. doi: 10.12073/j.hjxb.20211102003

    Yin Yuhuan, Zeng Youcai, Gao Han, et al. Effect of heat treatment on microstructure evolution and mechanical properties of 2219 aluminum alloy joint as fabricated by double-pulsed TIG welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 42 − 49. doi: 10.12073/j.hjxb.20211102003
    [11]
    孙佳孝, 杨可, 王秋雨, 等. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665 − 674.

    Sun Jiaxiao, Yang Ke, Wang Qiuyu, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metallurgica Sinica, 2021, 57(5): 665 − 674.
    [12]
    毛晓东, 谷宁杰, 宋小雨, 等. 焊丝成分对5E61铝合金TIG焊接头组织和性能的影响[J]. 焊接学报, 2022, 43(4): 86 − 93. doi: 10.12073/j.hjxb.20211024001

    Mao Xiaodong, Gu Ningjie, Song Xiaoyu, et al. Effect of welding wire composition on microstructure and properties of 5E61 aluminum alloy TIG welded joints[J]. Transactions of the China Welding Institution, 2022, 43(4): 86 − 93. doi: 10.12073/j.hjxb.20211024001
    [13]
    Huang Yong, Wang Boyang, Guo Jianhang, et al. The effect of activating fluxes on the cathode spots in the activating TIG welding[J]. China Welding, 2023, 32(1): 7 − 17.
    [14]
    Ding Yusheng, Gao Kunyuan, Guo Shanshan, et al. The recrystallization behavior of Al-Mg-0.4Mn-0.15Zr-xSc(x = 0.04-0.10 wt%) alloys[J]. Materials Characterization, 2019, 147: 262 − 270. doi: 10.1016/j.matchar.2018.11.009
    [15]
    Wu Hao, Wen Shengping, Huang Hui, et al. A study of precipitation strengthening and recrystallization behavior in dilute Al-Er-Hf-Zr alloys[J]. Materials Science and Engineering A, 2015, 639: 307 − 313. doi: 10.1016/j.msea.2015.05.027
    [16]
    Deng Y, Peng B, Xu G F, et al. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al-Zn-Mg alloys[J]. Materials Science and Engineering A, 2015, 639: 500 − 513. doi: 10.1016/j.msea.2015.05.052
    [17]
    苟国庆, 黄楠, 陈辉, 等. 高速列车A7N01S-T5铝合金焊接接头盐雾腐蚀行为分析[J]. 焊接学报, 2011, 32(10): 17 − 20.

    Gou Guoqing, Huang Nan, Chen Hui, et al. Analysis on corrosion behavior of welded joint of A7N01S-T5 aluminum alloy for high-speed train[J]. Transactions of the China Welding Institution, 2011, 32(10): 17 − 20.
    [18]
    孟立春, 康旭, 孙延军, 等. 7N01铝合金搅拌摩擦焊接头力学性能[J]. 焊接学报, 2012, 33(2): 90 − 92.

    Meng Lichun, Kang Xu, Sun Yanjun, et al. Mechanical properties of 7N01 aluminum friction stir welding joint[J]. Transactions of the China Welding Institution, 2012, 33(2): 90 − 92.
    [19]
    苏丹, 张嘉艺, 王维, 等. Sc、Zr微合金化对5356铝合金焊材组织及焊接性能的影响[J]. 热加工工艺, 2020, 49(19): 11 − 16.

    Su Dan, Zhang Jiayi, Wang Wei, et al. Effects of Sc, Zr microalloying on microstructure and weldability of 5356 aluminium alloy welding material[J]. Hot Working Technology, 2020, 49(19): 11 − 16.
    [20]
    吴 浩, 郑志凯, 任思蒙, 等. 微量Er和Zr对Al-Mg合金再结晶行为和焊接性能的影响[J]. 中国有色金属学报, 2021, 31(2): 289 − 297. doi: 10.11817/j.ysxb.1004.0609.2021-39688

    Wu Hao, Zheng Zhikai, Ren Simeng, et al. Effects of Er and Zr micro-additions on recrystallization behavior and welding properties of Al-Mg alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 289 − 297. doi: 10.11817/j.ysxb.1004.0609.2021-39688
    [21]
    Li B, Pan Q L, Chen C P, et al. Effect of aging time on precipitation behavior, mechanical and corrosion properties of a novel Al-Zn-Mg-Sc-Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(9): 2263 − 2275. doi: 10.1016/S1003-6326(16)64347-9
    [22]
    Lu J T, Huang H, Wu H, et al. Mechanical properties and corrosion behavior of a new RRA-treated Al-Zn-Mg-Cu-Er-Zr alloy[J]. Rare Metals, 2023, 42(2): 672 − 679. doi: 10.1007/s12598-017-0967-9
    [23]
    Subbaiah K. Microstructure and mechanical properties of tungsten inert gas welded joints of cast Al-Mg-Sc alloy[J]. Materials Today: Proceedings, 2019, 16: 248 − 253. doi: 10.1016/j.matpr.2019.05.086
    [24]
    Zhang W, Xing Y, Jia Z H, et al. Effect of minor Sc and Zr addition on microstructure and properties of ultra-high strength aluminum alloy[J]. Rare Metals, 2014, 24: 3866 − 3871.
    [25]
    Liu C Y, Zhang B, Ma Z Y, et al. Effects of pre-aging and minor Sc addition on the microstructure and mechanical properties of friction stir processed 7055 Al alloy[J]. Vacuum, 2018, 149: 106 − 113. doi: 10.1016/j.vacuum.2017.12.030
  • Related Articles

    [1]ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240202001
    [2]ZHENG Wenjian, LI Zhengyang, WANG Xinghua, GONG Xuhui, YAN Dejun, LAI Shaobo, YANG Jianguo. Effect of heat conduction mode on microstructure and properties of 800 MPa class marine high strength steel fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 38-46. DOI: 10.12073/j.hjxb.20230605004
    [3]REN Xianghui, LIANG Wenqi, WANG Ruichao, HAN Shanguo, WU Wei. Effects of different welding modes on microstructure and mechanical properties of 316 stainless steel by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 79-85, 92. DOI: 10.12073/j.hjxb.20230413002
    [4]LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003
    [5]WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
    [6]FENG Yuehai, TANG Ronghua, LIU Siyu, CHEN Qi. Microstructures and mechanical properties of stainless steel component deposited with 308L wire by hot wire plasma arc additive manufacturing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 77-83. DOI: 10.12073/j.hjxb.20200512001
    [7]GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004
    [8]LIU Liming, HE Yajing, LI Zongyu, ZHANG Zhaodong. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 13-19. DOI: 10.12073/j.hjxb.20200806001
    [9]CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
    [10]WANG Xiaoguang, LIU Fencheng, FANG Ping, WU Shifeng. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 100-106. DOI: 10.12073/j.hjxb.2019400135
  • Cited by

    Periodical cited type(1)

    1. 魏守征,饶文姬,段庆阳,李志勇,张英乔. 背面焊缝激光重熔处理对Ti/Al高速FA-MIG焊接头组织性能的影响. 航空制造技术. 2024(19): 117-124 .

    Other cited types(0)

Catalog

    Article views (32) PDF downloads (12) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return