Advanced Search
ZHANG Yong, LI Shu, LU Jie, TANG Jiacheng, SHANG Bin, JING Xu. Softening behavior in the heat-affected zone of 6061-T6 aluminum alloy joints inhibited by rotational impact with welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 104-111. DOI: 10.12073/j.hjxb.20231121003
Citation: ZHANG Yong, LI Shu, LU Jie, TANG Jiacheng, SHANG Bin, JING Xu. Softening behavior in the heat-affected zone of 6061-T6 aluminum alloy joints inhibited by rotational impact with welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 104-111. DOI: 10.12073/j.hjxb.20231121003

Softening behavior in the heat-affected zone of 6061-T6 aluminum alloy joints inhibited by rotational impact with welding

More Information
  • Received Date: November 20, 2023
  • Available Online: February 16, 2025
  • In response to the issue of over-aging softening in the heat-affected zone (HAZ) of 6061-T6 aluminum alloy during welding, which is caused by excessively high local peak temperatures, a novel approach is proposed. This method involves applying a rotational impact during the welding process to the over-aging softened zone of the weld joint, thereby inhibiting the softening of the weld joint. Microstructural and hardness tests were conducted on the HAZ of the joint under the influence of the rotational impact during welding. The results indicate that the hardness of the HAZ significantly increases under the rotational impact, with a reduction in the size and an increase in the number of precipitated phases within the softened zone, effectively mitigating the degree of softening. Using Material Studio software, the relationship between the main aging precipitation phase transformation and stress in 6061 aluminum alloy under ideal conditions was analyzed. The computational results show that the β″ and β phases exhibit good stability under pressure, while the β′ phase is more sensitive to pressure, undergoing lattice constant distortion within a certain pressure range. As the applied force increases, the sequence of aging precipitation is altered.

  • [1]
    Kapil A, Lee T, Vivek A, et al. Spot impact welding of an agehardening aluminum alloy: process, structure and properties[J]. Journal of Manufacturing Processes, 2019, 37: 42 − 52. doi: 10.1016/j.jmapro.2018.11.006
    [2]
    Gopkalo O, Liu X, Long F, et al. Nonisothermal thermal cycleprocess model for predicting post-weld hardness in friction stir welding of dissimilar age-hardenable aluminum alloys[J]. Materials Science and Engineering: A, 2019, 754: 205 − 215. doi: 10.1016/j.msea.2019.03.025
    [3]
    Wang Z, Chen M, Jiang H, et al. Effect of artificial ageing on strength and ductility of an Al-Cu-Mg-Mn alloy subjected to solutionizing and room-temperature rolling[J]. Materials Chara-cterization, 2020, 165: 110383. doi: 10.1016/j.matchar.2020.110383
    [4]
    吕晓春, 雷振, 张健, 等. 高速列车6005A-T6铝合金焊接接头软化分析[J]. 焊接学报, 2014, 35(8): 25 − 29.

    Lü Xiaochun, Lei Zhen, Zhang Jian, et al. Analysis of softening of 6005A-T6 aluminum alloy welded joints of high-speed train[J]. Transactions of the China Welding Institution, 2014, 35(8): 25 − 29.
    [5]
    毛镇东, 郑自芹, 李帅贞, 等. 高速列车用6A01-T5铝合金MIG焊接接头软化行为研究[J]. 热加工艺, 2021, 50(1): 35 − 39.

    Mao Zhendong, Zheng Ziqin, Li Shuaizhen, et al. Study on sof-tening behavior of 6A01-T5 aluminum alloy MIG welded joints for high-speed trains[J]. Hot Additive Technology, 2021, 50(1): 35 − 39.
    [6]
    Wahid M A, Siddiquee A N, Khan Z A, et al. Analysis of cooling media effects on microstructure and mechanical properties during FSW/UFSW of AA 6082-T6[J]. Materials Research Express, 2018, 5(4): 046512. doi: 10.1088/2053-1591/aab8e3
    [7]
    Hu Y, Liu H, Du S. Achievement of high-strength 2219 aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding[J]. Materials Science and Engineering: A, 2021, 804: 140587. doi: 10.1016/j.msea.2020.140587
    [8]
    Liang Y, Shen J, Hu S, et al. Effect of TIG current on micro structural and mechanical properties of 6061-T6 aluminium alloy joints by TIG-CMT hybrid welding[J]. Journal of Materials Processing Technology, 2018, 255: 161 − 174. doi: 10.1016/j.jmatprotec.2017.12.006
    [9]
    范成磊, 方洪渊, 田应涛, 等. 随焊冲击碾压对LY12CZ铝合金接头组织和性能的影响[J]. 材料工程, 2004(10): 24 − 28. doi: 10.3969/j.issn.1001-4381.2004.10.006

    Fan Chenglei, Fang Hongyuan, Tian Yingtao, et al. Influence of impact crushing with welding on the organization and properties of LY12CZ aluminum alloy joints[J]. Materials Engineering, 2004(10): 24 − 28. doi: 10.3969/j.issn.1001-4381.2004.10.006
    [10]
    Fu S, Yi D Q, Liu H Q, et al. Effects of external stress aging on morphology and precipitation behavior of θ″phase in Al- Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2282 − 2288. doi: 10.1016/S1003-6326(14)63345-8
    [11]
    Ma Y, Oganov A R, Xie Y. High-pressure structures of lithium, potassium, and rubidium predicted by an abinitio evolutionary algorithm[J]. Physical Review B, 2008, 78(1): 014102. doi: 10.1103/PhysRevB.78.014102
    [12]
    Xiao H Y, Jiang X D, Duan G, et al. First principles calcul ations of pressure induced phase transformation in AlN and GaN[J]. Computational Materials Science, 2010, 48(4): 768 − 772. doi: 10.1016/j.commatsci.2010.03.028
    [13]
    张勇, 唐家成, 葛泽龙, 等. 随焊旋转冲击抑制30CrMnSi接头热影响区软化[J]. 焊接学报, 2021, 42(5): 84 − 89. doi: 10.12073/j.hjxb.20200309001

    Zhang Yong, Tang Jiacheng, Ge Zelong et al. Suppression of softening in the heat-affected zone of 30CrMnSi joints by rotateonnal impact with welding[J]. Transactions of the China Welding Institution, 2021, 42(5): 84 − 89. doi: 10.12073/j.hjxb.20200309001
    [14]
    张勇, 杨建国, 方洪渊, 等. TC4薄板焊接件随焊冲击旋转挤压力计算[J]. 焊接学报, 2012, 33(9): 89 − 92.

    Zhang Yong, Yang Jianguo, Fang Hongyuan, et al. Calculation of rotational squeezing force of TC4 thin plate weldments with welding impact[J]. Transactions of the China Welding Institution, 2012, 33(9): 89 − 92.
    [15]
    顾媛, 陈江华, 刘春辉, 等. 预变形对Al-Mg-Si-Cu合金时效硬化和显微结构的影响[J]. 金属学报, 2015, 51(11): 1400 − 1406.

    Gu Yuan, Chen Jianghua, Liu Chunhui, et al. Effect of pre-deformation on age hardening and microstructure of Al-Mg-Si-Cu alloy[J]. Acta Metallurgica Sinica, 2015, 51(11): 1400 − 1406.
    [16]
    Teichmann K, Marioara C D, Pedersen K O, et al. The effect of simultaneous deformation and annealing on the precipitation behaviour and mechanical properties of an Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 2013, 565: 228 − 235. doi: 10.1016/j.msea.2012.12.042
    [17]
    Izcara X L, Blank A G, Pyczak F, et al. Characterization and modeling of the influence of artificial aging on the microstruct ural evolution of age-hardenable Al-Si-Mg-(Cu) aluminum all-oys[J]. Materials Science and Engineering: A, 2014, 610: 46 − 53. doi: 10.1016/j.msea.2014.04.031
    [18]
    朱琳. 铝合金准二维多晶试样中时效析出相对力学性能和变形机制的影响[D]. 重庆: 重庆大学, 2017.

    Zhu Lin. Effect of aging precipitation on relative mechanical properties and deformation mechanism in quasi-two-dimensional polycrystalline specimens of aluminum alloys [D]. Chongqing: Chongqing University, 2017.
    [19]
    张磊, 董选普, 李继强, 等. Mg-15Gd-3Y挤压合金的时效强化[J]. 中国有色金属学报, 2010, 20(4): 599 − 605.

    Zhang Lei, Dong Xuanpu, Li Jiqiang, et al. Age strengthening of Mg-15Gd-3Y extrusion alloy[J]. China Journal of Nonferrous Metals, 2010, 20(4): 599 − 605.
    [20]
    张丽凤. 汽车用6061铝合金热压缩变形行为研究[J]. 塑性工程学报, 2020, 27(11): 174 − 181. doi: 10.3969/j.issn.1007-2012.2020.11.026

    Zhang Lifeng. Study on thermal compression deformation beh-avior of 6061 aluminum alloy for automotive use[J]. Journal of Plasticity Engineering, 2020, 27(11): 174 − 181 doi: 10.3969/j.issn.1007-2012.2020.11.026
    [21]
    陈江华, 刘春辉. Al-Mg-Si(Cu)合金中纳米析出相的结构演变[J]. 中国有色金属学报, 2011, 21(10): 2352 − 2360.

    Chen Jianghua, Liu Chunhui. Structural evolution of nanopreci-pitated phase in Al-Mg-Si(Cu) alloy[J]. Chinese Journal of No-nferrous Metals, 2011, 21(10): 2352 − 2360.
    [22]
    Zandbergen H W, Andersen S J, Jansen J. Structure determinat-ion of Mg5Si6 particles in Al by dynamic electron diffraction st-udies[J]. Science, 1997, 277(5330): 1221 − 1225. doi: 10.1126/science.277.5330.1221
    [23]
    Vissers R, van Huis M A, Jansen J, et al. The crystal structure of the β′phase in Al-Mg-Si alloys[J]. Acta Materialia, 2007, 55(11): 3815 − 3823. doi: 10.1016/j.actamat.2007.02.032
    [24]
    Zhang B, Wu L, Wan B, et al. Structural evolution, mechanical properties, and electronic structure of Al-Mg-Si compounds from first principles[J]. Journal of Materials Science, 2015, 50(19): 6498 − 6509. doi: 10.1007/s10853-015-9209-4
    [25]
    Villars P, Calvert L D. Pearson's handbook of crystallographic data for intermetallic phases[J]. Crystal Research and Technol-ogy, 1987, 22(11).
    [26]
    Wu M M, Wen L, Tang B Y, et al. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg-Sc-Zn alloy[J]. Journal of Alloys and Compounds, 2010, 506(1): : 412 − 417. doi: 10.1016/j.jallcom.2010.07.018
    [27]
    Wang S Q, Schneider M, Ye H Q, et al. First-principles study of the formation of Guinier-Preston zones in Al-Cu alloys[J]. Scripta Materialia, 2004, 51(7): 665 − 669. doi: 10.1016/j.scriptamat.2004.06.018
  • Related Articles

    [1]ZHOU Xin, HUANG Ruisheng, LIANG Xiaomei, TENG Bin. Analysis of in-situ heat treatment on microstructure and mechanical properties by quadruple-electrode gas tungsten arc additive manufacturing of 00Cr13Ni5Mo stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240202001
    [2]ZHENG Wenjian, LI Zhengyang, WANG Xinghua, GONG Xuhui, YAN Dejun, LAI Shaobo, YANG Jianguo. Effect of heat conduction mode on microstructure and properties of 800 MPa class marine high strength steel fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 38-46. DOI: 10.12073/j.hjxb.20230605004
    [3]REN Xianghui, LIANG Wenqi, WANG Ruichao, HAN Shanguo, WU Wei. Effects of different welding modes on microstructure and mechanical properties of 316 stainless steel by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(4): 79-85, 92. DOI: 10.12073/j.hjxb.20230413002
    [4]LI Ke, NIU Ben, PAN Linlin, YI Jianglong, ZOU Xiaodong. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 94-101. DOI: 10.12073/j.hjxb.20221214003
    [5]WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
    [6]FENG Yuehai, TANG Ronghua, LIU Siyu, CHEN Qi. Microstructures and mechanical properties of stainless steel component deposited with 308L wire by hot wire plasma arc additive manufacturing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 77-83. DOI: 10.12073/j.hjxb.20200512001
    [7]GUO Shun, WANG Pengxiang, ZHOU Qi, ZHU Jun, GU Jieren. Microstructure and mechanical properties of bimetallic intertexture structure fabricated by plasma arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 14-19. DOI: 10.12073/j.hjxb.20201125004
    [8]LIU Liming, HE Yajing, LI Zongyu, ZHANG Zhaodong. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 13-19. DOI: 10.12073/j.hjxb.20200806001
    [9]CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
    [10]WANG Xiaoguang, LIU Fencheng, FANG Ping, WU Shifeng. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 100-106. DOI: 10.12073/j.hjxb.2019400135
  • Cited by

    Periodical cited type(1)

    1. 魏守征,饶文姬,段庆阳,李志勇,张英乔. 背面焊缝激光重熔处理对Ti/Al高速FA-MIG焊接头组织性能的影响. 航空制造技术. 2024(19): 117-124 .

    Other cited types(0)

Catalog

    Article views (30) PDF downloads (15) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return