Citation: | WU Jie, XUE Songbai, YU Zhihao, TAN Cheeleong, SUN Huabin, XU Yong. Effect of Nd on the high temperature reliability of Sn-3.8Ag-0.7Cu/Cu solder joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 9-13. DOI: 10.12073/j.hjxb.20201211002 |
姜楠, 张亮, 刘志权, 等. FCBGA器件SnAgCu焊点的热冲击可靠性分析[J]. 焊接学报, 2019, 40(9): 39 − 42.
Jiang Nan, Zhang Liang, Liu Zhiquan, et al. Thermal shock reliability analysis of SnAgCu solder joints for FCBGA devices[J]. Transactions of the China Welding Institution, 2019, 40(9): 39 − 42.
|
Samavatian V, Iman-Eini H, Avenas Y, et al. Effects of creep failure mechanisms on thermomechanical reliability of solder joints in power semiconductors[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 8956 − 8964. doi: 10.1109/TPEL.2020.2973312
|
孙凤莲, 李天慧, 韩帮耀. Sn5Sb1Cu0.1Ni0.1Ag/Cu(Ni)焊点的抗时效性能[J]. 焊接学报, 2020, 41(2): 28 − 32. doi: 10.12073/j.hjxb.20190929001
Sun Fenglian, Li Tianhui, Han Bangyao. Aging resistance of Sn5Sb1Cu0.1Ni0.1Ag/Cu(Ni) solder joints[J]. Transactions of the China Welding Institution, 2020, 41(2): 28 − 32. doi: 10.12073/j.hjxb.20190929001
|
Wang F, Ying H, Shuang T, et al. Effect of cooling and aging on microstructure and mechanical properties of Sn-9Zn solder[J]. China Welding, 2017, 26(1): 37 − 43.
|
Annuar S, Mahmoodian R, Hamdi M, et al. Intermetallic compounds in 3D integrated circuits technology: a brief review[J]. Science and Technology of Advanced Materials, 2017, 18(1): 693 − 703. doi: 10.1080/14686996.2017.1364975
|
Wu J, Xue S B, Wang J W, et al. Enhancement on the high-temperature joint reliability and corrosion resistance of Sn-0.3Ag-0.7Cu low-Ag solder contributed by Al2O3 nanoparticles (0.12%)[J]. Journal of Materials Science: Materials in Electronics, 2018, 29: 19663 − 19677. doi: 10.1007/s10854-018-0092-z
|
张亮, Tu King Ning, 孙磊, 等. 纳米-微米颗粒增强复合钎料研究最新进展[J]. 中南大学学报(自然科学版), 2015, 46(1): 49 − 65. doi: 10.11817/j.issn.1672-7207.2015.01.008
Zhang Liang, Tu King Ning, Sun Lei, et al. Latest research progress of nano micron particle reinforced composite solder[J]. Journal of Central South University (Natural Science Edition), 2015, 46(1): 49 − 65. doi: 10.11817/j.issn.1672-7207.2015.01.008
|
刘霜, 薛松柏. Nd对Sn-0.7Cu-0.05Ni焊点组织与力学性能的影响[J]. 焊接学报, 2020, 41(1): 50 − 54.
Liu Shuang, Xue Songbai. Effect of Nd on microstructure and mechanical properties of Sn-0.7Cu-0.05Ni solder joint[J]. Transactions of the China Welding Institution, 2020, 41(1): 50 − 54.
|
Lau C S, Khor C Y, Soares D, et al. Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review[J]. Soldering & Surface Mount Technology, 2016, 28(2): 41 − 62.
|
Tang Y, Li G Y, Chen D Q, et al. Influence of TiO2 nanoparticles on IMC growth in Sn-3.0Ag-0.5Cu-xTiO2 solder joints during isothermal aging process[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(2): 981 − 991. doi: 10.1007/s10854-013-1675-3
|
Fouzder T, Shafiq I, Chan Y C, et al. Influence of SrTiO3 nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads[J]. Journal of Alloys and Compounds, 2011, 509(5): 1885 − 1892. doi: 10.1016/j.jallcom.2010.10.081
|
Ding M, Xing W Q, Yu X Y, et al. Effect of micro alumina particles additions on the interfacial behavior and mechanical properties of Sn-9Zn-1Al2O3 nanoparticles on low temperature wetting and soldering of 6061 aluminum alloys[J]. Journal of Alloys and Compounds, 2017, 739: 481 − 488.
|
Wu J, Xue S B, Wang J W, et al. Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn-0.3Ag-0.7 Cu low-Ag solder[J]. Journal of Alloys and Compounds, 2019, 784: 471 − 487. doi: 10.1016/j.jallcom.2019.01.034
|
Sadiq M, Pesci R, Cherkaoui M. Impact of thermal aging on the microstructure evolution and mechanical properties of lanthanum-doped tin-silver-copper lead free solders[J]. Journal of Electronic Materials, 2013, 42: 492 − 501.
|
Gao L L, Xue S B, Zhang L, et al. Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 643 − 648. doi: 10.1007/s10854-009-9970-8
|
Ye H, Xue S B, Pecht M. Effects of thermal cycling on rare earth (Pr)-induced Sn whisker/hillock growth[J]. Materials Letters, 2013, 98(5): 78 − 81.
|
Mansour M M, Saad G, Wahab L A, et al. Indentation creep behavior of thermally aged Sn-5wt%Sb-1.5wt%Ag solder integrated with ZnO nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(9): 1 − 10.
|
马超力, 薛松柏, 李阳, 等. 时效对Sn-Cu-Ni-xPr/Cu焊点组织与性能的影响[J]. 焊接学报, 2014, 35(3): 85 − 88.
Ma Chaoli, Xue Songbai, Li Yang, et al. Effect of aging on Microstructure and properties of Sn-Cu-Ni-xPr/Cu solder joints[J]. Transactions of the China Welding Institution, 2014, 35(3): 85 − 88.
|
[1] | LUO Yi, XIE Xiaojian, ZHU Yang, WAN Rui, HU Shaoqiu. Time and frequency domain analysis of metal droplet transfer by acoustic emission signals during pulse MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 83-86,91. |
[2] | ZHANG Xiaoli, LIN Fang, LI Yuzhen, XUE Jiaxiang. Analysis of arc adjustment mechanism to pulsed MIG welding based on PFM adjustment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 83-87. |
[3] | ZHANG Xiaoli, LI Yuzhen, LONG Peng, XUE Jiaxiang. Pulsed MIG welding of aluminum alloy sheet based on fuzzy self-tuning PID control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 83-87. |
[4] | YANG Lijun, LI Zhiyong, LI Huan, LI Junyue. Metal transfer under self-adapting control of meso-spray in pulse MIG welding of aluminum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 17-20. |
[5] | PENG Haiyan, HUANG Shisheng, WU Kaiyuan, WANG Zhenmin. Digital control system based on DSP for pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 63-66. |
[6] | XUE Jiaxiang, YAO Ping, DONG Fei, WEN Yuanmei, WANG Zhenmin. Forward median waveform control process parameter in pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 73-76,80. |
[7] | YANG Lijun, ZHANG Jian, LI Zhiyong, LI Junyue. A self-adapting control method of Al pulsed-MIG welding for meso-spray transfer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 93-96. |
[8] | WU Kai-yuan, HUANG Shi-sheng, MENG Yong-min, LI Yang. Control strategy of waveform with median phase in droplet transfer for pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 51-54,58. |
[9] | LI He-qi, LI Chun-xu, LI Fang, LU Guang. Control optimization for pulsed MIG weding machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 23-26. |
[10] | Yin Shuyan, Gang Tie, Bu Huaquan. Microcumputer control system of synergic pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (1): 46-52. |
1. |
朱明涛,孟云娜,凡亚丽,卢晨,侯雨珊,倪锋. 粉末烧结Cu-C-SnO_2多孔材料摩擦磨损特性研究. 粉末冶金工业. 2022(01): 36-44 .
![]() |