Citation: | DU Quanbin, ZHANG Liyan, LI Ang, CUI Bing, HUANG Junlan. Effect of Sn on the microstructure and properties of Cu-Sn-Ti brazing filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 89-97. DOI: 10.12073/j.hjxb.20230309004 |
In order to reveal the regulation of Sn on the microstructure and mechanical properties of Cu-Sn-Ti brazing filler metal, Cu-xSnxTi10 brazing filler metals were prepared by vacuum non-self-consumption melting method, and the effects of Sn on the microstructure, microhardness, shear strength and fracture morphology of Cu-Sn-Ti brazing filler metals were investigated by using scanning electron microscopy (SEM), X-ray diffractometer (XRD), energy spectrometer (EDS), and universal material testing machine, etc. the results showed that:the microstructure evolution of the solder with the increase of Sn content was as follows : dendritic primary α-Cu matrix phase + eutectic tissue + intergranular tissue → primary α-Cu matrix phase + eutectic tissue → eutectic tissue → primary CuSn3Ti5 phase + coarsened eutectic tissue + α-Cu matrix phase (Sn-rich) + Cu41Sn11 phase + SnTi3 phase, in which the intergranular tissue was a mixed structure of α-Cu phase and CuSn3Ti5 phase + a small amount of SnTi3 + CuTi phase + Cu3Ti phase. With the increase of Sn content, the microhardness of filler metal increases first and then decreased, the shear strength of filler metal decreasing gradually, and the fracture morphology changed from the quasi-cleavage fracture to the mixture of cleavage fracture and quasi-cleavage fracture. The increase of Sn content promoted the formation of coarsened CuSn3Ti5 phase and eutectic tissue in the filler metal, which was the main reason for the decrease of shear strength of brazing metal.
[1] |
Zhang L. Filler metals, brazing processing and reliability for diamond tools brazing: a review[J]. Journal of Manufacturing Processes, 2021, 66: 651 − 668. doi: 10.1016/j.jmapro.2021.04.015
|
[2] |
Wang S Y, Xiao B, Xiao H Z, et al. Microstructure and mechanical properties of the diamond/1045 steel joint brazed using Ni-Cr + Mo composite filler[J]. Diamond and Related Materials, 2023, 133: 109691.
|
[3] |
Si S H, Ding Z C, Zuo R Z, et al. Adding Hf element to improve the strength and wear resistance of diamond brazed with Ni-based boron-free brazing filler metal[J]. Diamond and Related Materials, 2022, 121: 108723.
|
[4] |
Ma W, Xiao H Z, Wang S Y, et al. Interface characteristics and mechanical properties of vacuum-brazed diamond with Ni–Cr + W composite filler alloy[J]. Vacuum, 2022, 198: 110897. doi: 10.1016/j.vacuum.2022.110897
|
[5] |
Long F, He P, Sekulic P. Research and development of powder brazing filler metals for diamond tools: a review[J]. Metals, 2018, 8(5): 315. doi: 10.3390/met8050315
|
[6] |
龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138 − 23144.
Long Weiming, Hao Qingle, Fu Yucan, et al. Research progress of filler metals for brazing diamond tools[J]. Materials Reports, 2020, 34(23): 23138 − 23144.
|
[7] |
毛雅梅, 黑鸿君, 高洁, 等. 钎焊金刚石研究进展及其工具的应用[J]. 机械工程学报, 2022, 58(4): 80 − 93. doi: 10.3901/JME.2022.04.080
Mao Yamei, Hei Hongjun, Gao Jie, et al. Research progress of brazing diamond and application of tools[J]. Journal of Mechanical Engineering, 2022, 58(4): 80 − 93. doi: 10.3901/JME.2022.04.080
|
[8] |
Hsieh Y C, Lin S T. Microstructural development of Cu-Sn-Ti alloys on graphite[J]. Journal of Alloys and Compounds, 2008, 466: 126 − 132. doi: 10.1016/j.jallcom.2007.11.038
|
[9] |
关砚聪, 郑敏利, 姚德明. 铜基钎料焊接金刚石的界面结构与强度[J]. 焊接学报, 2012, 33(7): 65 − 68.
Guan Yancong, Zheng Minli, Yao Deming. Interfacial structure and strength of Cu-based filler metal welding diamond[J]. Transactions of the China Welding Institution, 2012, 33(7): 65 − 68.
|
[10] |
Huang S F, Tsai H L, Lin S T. Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix[J]. Materials Chemistry and Physics, 2004, 84: 251 − 258. doi: 10.1016/S0254-0584(03)00328-6
|
[11] |
赵鹏程, 闫薪霖, 肖冰, 等. Cu–Sn–Ti钎料与陶瓷结合剂体积比对金刚石节块微观结构和力学性能的影响[J]. 金刚石与磨料磨具工程, 2020, 40(3): 52 − 56. doi: 10.13394/j.cnki.jgszz.2020.3.0008
Zhao Pengcheng, Yan Xinglin, Xiao Bing, et al. Effect of volume ratio between Cu–Sn–Ti alloy and vitrified binder on microstructures and mechanical properties of diamond segments[J]. Diamond & Abrasives Engineering, 2020, 40(3): 52 − 56. doi: 10.13394/j.cnki.jgszz.2020.3.0008
|
[12] |
Yin X H, Xu F, Min C Y, et al, Promoting the bonding strength and abrasion resistance of brazed diamond using Cu-Sn-Ti composite alloys reinforced with tungsten carbide[J]. Diamond and Related Materials, 2021, 112: 108239.
|
[13] |
Cui B, Liu Z W, Zuo R Z, et al. Microstructure and mechanical properties of vacuum brazed diamond abrasive segments with zirconium carbide reinforced Cu-based active filler metals[J]. Diamond and Related Materials, 2022, 126: 109091.
|
[14] |
Cui B, Yan P P, Zhao W X, et al. Influence of Ge content on the interfacial characteristics and wear resistance of brazed synthetic diamond grains of Cu-based composite filler[J]. Welding in the World, 2022, 66(10): 1975 − 1987.
|
[15] |
Cui B, Zhao W X; Zuo R Z, et al. Effect of rare earth alloy addition on the microstructure and abrasion resistance of brazed diamonds with Cu-Sn-Ti filler metal[J]. Diamond and Related Materials, 2022, 126: 109110. doi: 10.1016/j.diamond.2022.109110
|
[16] |
Wu Q P, Luo Z, Wang Y, et al. Effect of cerium on wettability of mechanically milled Cu-based brazing alloy powder[J]. Journal of Rare Earths, 2018, 36(11): 1226 − 1233. doi: 10.1016/j.jre.2018.08.001
|
[17] |
Liu X Y, Wang L H, Zhang Y J, et al. Microstructural evolution of sandwiched Cr interlayer in Cu/Cr/diamond subjected to heat treatment[J]. Thin Solid Films, 2021(31): 138911.
|
[18] |
Li M, Chen J C, Lin Q L, et al. Interfacial microstructures and mechanical integrity of synthetic diamond brazed by a low-temperature Cu-Sn-Cr filler alloy[J]. Diamond and Related Materials, 2019, 97: 107440. doi: 10.1016/j.diamond.2019.107440
|
[19] |
Cui B, Zhao W X, Zuo R Z, et al. The abrasion resistance of brazed diamond using Cu–Sn–Ti composite alloys reinforced with boron carbide[J]. Diamond and Related Materials, 2022, 124: 108926. doi: 10.1016/j.diamond.2022.108926
|
[20] |
Li H D, Li K A, Fan Y G, et al. Influence of brazing temperature on interfacial reaction layer characteristics of Cu-Sn-Ti/diamond composites[J]. Diamond and Related Materials, 2022, 128: 109276. doi: 10.1016/j.diamond.2022.109276
|
[21] |
Fan Y G, Li K A, Li H D. Profiling interfacial reaction features between diamond and Cu-Sn-Ti active filler metal brazed at 1223 K[J]. Journal of Materials Science & Technology, 2022, 131(36): 100 − 105.
|
[22] |
Duan D Z, Han F, Ding J J, et al. Microstructure and performance of brazed diamonds with multilayer graphen-emodified Cu-Sn-Ti solder alloys[J]. Ceramics International, 2021, 47(16): 22854 − 22863. doi: 10.1016/j.ceramint.2021.04.304
|
[23] |
Li X, Ivas T, Spierings A B, et al. Phase and microstructure formation in rapidly solidified Cu-Sn and Cu-Sn-Ti alloys[J]. Journal of Alloys and Compounds, 2018, 735: 1374 − 1382. doi: 10.1016/j.jallcom.2017.11.237
|
[24] |
Naka M, Nakade I, Schuster J C, et al. Determination of the liquidus of the ternary system Cu-Sn-Ti[J]. Journal of Phase Equilibria, 2001, 22(3): 352 − 356. doi: 10.1361/105497101770338879
|
[25] |
Wang J, Liu C L, Leinenbach C, et al. Experimental investigation and thermodynamic assessment of the Cu-Sn-Titernary system[J]. Calphad, 2011, 35(1): 82 − 94. doi: 10.1016/j.calphad.2010.12.006
|
[1] | ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001 |
[2] | SU Guoxing, SHI Yu, ZHU Ming, ZHANG Gang. Microstructure and properties of Inconel 718 cladding layer efficiently fabricated by laser metal deposition with hot wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240628003 |
[3] | LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001 |
[4] | WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001 |
[5] | MA Zongbiao, HUANG Pengfei, ZHANG Xuanning, WANG Yachun, DAI Hongbo, WANG Guanghui. Experimental study on deposition rate of high efficiency hot wire GMAW welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 44-48. DOI: 10.12073/j.hjxb.20200605004 |
[6] | WANG Xiaoguang, LIU Fencheng, FANG Ping, WU Shifeng. Forming accuracy and properties of wire arc additive manufacturing of 316L components using CMT process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 100-106. DOI: 10.12073/j.hjxb.2019400135 |
[7] | HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129 |
[8] | WANG Xiaorong, WANG Zhaoqin, HE Peng, LIN Tiesong. Numerical control deposition of AlCoCrFeNi high-entropy alloy on 45 steel by high energy micro arc spark[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 73-76. |
[9] | GAO Ying, HAN Jinghua, LOU Liyan, LI Huan. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 45-48. |
[10] | ZHANG Jian-qiang, ZHAO Hai-yan, WU Su, WANG Cheng-quan, CHEN Bing-quan. Mechanical measuring and calculation method of heat efficiency of welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 63-65,76. |