Citation: | ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001 |
To investigate the electro-spark deposition process, orthogonal tests with electrode wobble and multi-pass multilayer continuous deposition experiments were designed and conducted, analyzing the influence of electrode wobble parameters on single-pass deposition layer formation and the effects of electrode wobble on deposition efficiency and material transfer efficiency in multi-pass multilayer continuous deposition. The results show that during longitudinal electrode movement, electrode wobble can increase the contact area between the electrode and workpiece, achieve uniform distribution of deposition points, and enhance both deposition efficiency and material transfer efficiency in electro-spark deposition. In single-pass deposition with electrode wobble, the wobble amplitude, wobble spacing, and movement speed significantly affect the surface morphology, average width, average fluctuation value, deposition efficiency, and material transfer efficiency of the single-pass deposition layer. The dominant factors influencing deposition efficiency and material transfer efficiency in descending order are movement speed, wobble spacing, and wobble amplitude. The main factors affecting average width are wobble amplitude, movement speed, and wobble spacing, while those influencing average fluctuation value are wobble spacing, movement speed, and wobble amplitude.
[1] |
Kumaran V, Muralidharan B. Electric discharge coating process: a critical review with potential application[J]. Engineering Research Express, 2023, 5(1): 12005. doi: 10.1088/2631-8695/acc0db
|
[2] |
Yang S, Gao S, Xue W, et al. Structural design and high temperature tribological behavior of a new turbine blade tip protective coating[J]. Surface & Coatings Technology, 2023, 457: 129316.
|
[3] |
Nisar A, Zhang C, Agarwal A. Unveiling the wear behavior of multi-component ultra-high temperature ceramic thin coatings with pulsed electro-spark deposition[J]. Surface & Coatings Technology, 2023, 473: 129971.
|
[4] |
Yang S, Gao S, Xue W, et al. Investigations on microstructure, oxidation, and tribological behavior of NiCoCrAlYTa/Y2O3 blade tip protective coating produced by electro spark deposition over a wide temperature range[J]. Tribology International, 2023, 180: 108274. doi: 10.1016/j.triboint.2023.108274
|
[5] |
Kuptsov K A, Antonyuk M N, Sheveyko A N, et al. High-entropy Fe-Cr-Ni-Co-(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications[J]. Surface and Coatings Technology, 2023, 453: 129136. doi: 10.1016/j.surfcoat.2022.129136
|
[6] |
Kayali Y, Kanca E, Gunen A. Effect of boronizing on microstructure, high-temperature wear and corrosion behavior of additive manufactured inconel 718[J]. Materials Characterization, 2022, 191: 112155. doi: 10.1016/j.matchar.2022.112155
|
[7] |
李忠盛, 吴护林, 陈海涛, 等. 钢表面电火花沉积合成W-Mo高熔点复合涂层[J]. 表面技术, 2023, 52(10): 250 − 258.
Li Zhongsheng, Wu Hulin, Chen Haitao, et al. High melting point composite coating of W-Mo alloy synthesized by electro-spark deposition on steel surface[J]. Surface Technology, 2023, 52(10): 250 − 258.
|
[8] |
杨林, 曹同坤, 吕壮. Ti(C, N)基金属陶瓷表面电火花沉积自润滑涂层及其摩擦学性能研究[J]. 工具技术, 2022, 56(10): 59 − 62. doi: 10.3969/j.issn.1000-7008.2022.10.011
Yang Lin, Cao Tongkun, Lü Zhuang. Study on the tribological properties of self-lubricatingcoatings deposited on Ti(C, N) cermet by electro-spark deposition[J]. Tool Technology, 2022, 56(10): 59 − 62. doi: 10.3969/j.issn.1000-7008.2022.10.011
|
[9] |
杨岚淞, 羊思洁, 罗松, 等. Q235钢表面电火花沉积铁基非晶改性层及其性能[J]. 电镀与涂饰, 2023, 42(3): 55 − 61.
Yang Lansong, Yang Sijie, Luo Song, et al. Electrospark deposition of amorphous Fe-based modified layer on surface of Q235 steel and its properties[J]. Electroplating and Finishing, 2023, 42(3): 55 − 61.
|
[10] |
孙又银, 高玉新, 程虎. La2O3对电火花沉积Fe基涂层组织和耐磨性能的影响[J]. 材料保护, 2022, 55(3): 93-97, 114.
Sun Youyin, Gao Yuxin, Cheng Hu. Effect of La2O3 on microstructure and wear properties of Fe-based coating by electro-spark deposition, 2022, 55(3): 93-97, 114.
|
[11] |
张忠科, 张栋, 王希靖, 等. 基于Labview的电火花自动沉积监控系统设计[J]. 电焊机, 2021, 51(5): 24 − 29. doi: 10.7512/j.issn.1001-2303.2121.05.05
Zhang Zhongke, Zhang Dong, Wang Xijing, et al. Design of automatic discharge deposition monitoring system based on labview[J]. Electric Welding Machine, 2021, 51(5): 24 − 29. doi: 10.7512/j.issn.1001-2303.2121.05.05
|
[12] |
刘宇, 王天姝, 苏全宁, 等. 钛合金表面电火花沉积NiCr–3涂层的试验研究[J]. 航空制造技术, 2022, 65(5): 104 − 112.
Liu Yu, Wang Tianshu, Su Quanning, et al. Experimental study on electrospark deposition of NiCr-3 coating on titanium alloy surface[J]. Aeronautical Manufacturing Technology, 2022, 65(5): 104 − 112.
|
[13] |
陈俊潮, 韩红彪, 王中豪, 等. 不同电极运动形式下电火花堆焊的放电机理分析[J]. 表面技术, 2021, 50(6): 281 − 287,316.
Chen Junchao, Han Hongbiao, Wang Zhonghao, et al. Analysis of discharge mechanism of electric spark overlaying in different modes of electrode movement[J]. Surface technology, 2021, 50(6): 281 − 287,316.
|
[14] |
王顺, 韩红彪, 李世康, 等. 基于正交试验的圆柱电极参数对电火花沉积质量影响分析[J]. 焊接学报, 2021, 42(7): 37 − 43. doi: 10.12073/j.hjxb.20210131002
Wang Shun, Han Hongbiao, Li Shikang, et al. Analysis of influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experimen[J]. Transactions of the China Welding Institution, 2021, 42(7): 37 − 43. doi: 10.12073/j.hjxb.20210131002
|
[15] |
李梦楠, 韩红彪, 李世康, 等. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响[J]. 焊接学报, 2023, 44(1): 71 − 77 doi: 10.12073/j.hjxb.20220206001
Li Mengnan, Han Hongbiao, Li Shikang, et al. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. Transactions of the China Welding Institution, 2023, 44(1): 71 − 77. doi: 10.12073/j.hjxb.20220206001
|
[16] |
侯玉杰, 韩红彪, 杨鑫, 等. 电火花沉积的放电参数闭环控制系统研制[J]. 焊接学报, 2023, 44(9): 53 − 59. doi: 10.12073/j.hjxb.20221122003
Hou Yujie, Han Hongbiao, Yang Xin, et al. Development of a closed loop control system for discharge parameters of electro-spark deposition[J]. Transactions of the China Welding Institution, 2023, 44(9): 53 − 59. doi: 10.12073/j.hjxb.20221122003
|
[17] |
Lian Y, Cui M, Han A, et al. Multi-Criteria optimization of automatic electro-spark deposition TiCrNiVSi0.1 multi-principal element alloy coating on TC4 alloy[J]. Coatings, 2023, 13(1): 214. doi: 10.3390/coatings13010214
|
[18] |
Hou Y, Han H, Zheng G, et al. Effect of discharge parameters on electric-spark deposition material transfer[J]. Proceedings of the Institution of Mechanical Engineers Part c-Journal of Mechanical Engineering Sciences, 2024(4): 1142 − 1148.
|
[19] |
韩红彪, 郭敬迪, 焦文清. 旋转电极电火花沉积/堆焊的放电机理[J]. 焊接学报, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129
Han Hongbiao, Guo Jingdi, Jiao Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. Transactions of the China Welding Institution, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129
|