Advanced Search
WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001
Citation: WANG Shun, TONG Jinzhong, HAN Hongbiao. An automatic control device of contact force for electro-spark deposition and deposition test[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 42-47. DOI: 10.12073/j.hjxb.20201108001

An automatic control device of contact force for electro-spark deposition and deposition test

More Information
  • Received Date: November 07, 2020
  • Available Online: April 22, 2021
  • An automatic control device of contact force for electro-spark deposition was designed to study the influence of contact force on electro-spark deposition. Automatic deposition with different contact forces was tested. The deposition efficiency, mass transfer efficiency, surface morphology of deposited layer and the number of various discharge waveforms under different test conditions were analyzed. The results show that when the contact force is 1.0 N, the maximum deposition efficiency and mass transfer efficiency are achieved, and the surface quality of the deposited layer is also good. The automatic control device for the contact force of electro-spark deposition can maintain the contact force between the electrode and the workpiece, so as to keep automatic electrode feeding. The change of contact force will change the contact status between the electrode and workpiece. With the increase of the contact force, sparks and splashes produced in automatic deposition decrease, and the short-circuit discharges increase while the contact discharges decrease, thus affecting the automatic deposition efficiency and the quality of deposited layer. Under certain test conditions, selecting the appropriate contact force can improve the deposition efficiency and mass transfer efficiency, and obtain a better quality of the deposited layer.
  • 辛昊, 王海涛, 高立, 等. 电火花沉积技术研究现状及其发展[J]. 热加工工艺, 2018, 47(20): 25 − 29.

    Xin Hao, Wang Haitao, Gao Li, et al. Research status and development of electric-spark deposition technology[J]. Hot Working Technology, 2018, 47(20): 25 − 29.
    罗成, 董仕节, 熊翔, 等. 电火花沉积表面处理技术的应用进展[J]. 表面技术, 2009, 38(4): 53 − 56. doi: 10.3969/j.issn.1001-3660.2009.04.019

    Luo Cheng, Dong Shijie, Xiong Xiang, et al. Application progress of electrospark deposition surfacing technology[J]. Surface Technology, 2009, 38(4): 53 − 56. doi: 10.3969/j.issn.1001-3660.2009.04.019
    Kuptsov K A, Sheveyko A N, Zamulaeva E I, et al. Two-layer nanocomposite WC/a-C coatings produced by a combination of pulsed arc evaporation and electro-spark deposition in vacuum[J]. Materials & Design, 2019, 167: 107645.
    Liu Y, Wang D P, Deng C Y, et al. Novel method to fabricate Ti-Al intermetallic compound coatings on Ti-6Al-4V alloy by combined ultrasonic impact treatment and electrospark deposition[J]. Journal of Alloys and Compounds, 2015, 628: 208 − 212. doi: 10.1016/j.jallcom.2014.12.144
    Yue T M, Liu J W. Magnetic-aided electrospark deposition[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 1507 − 1517. doi: 10.1007/s00170-019-04383-w
    王彦芳, 司爽爽, 宋增金, 等. 电火花沉积非晶涂层的组织结构与摩擦磨损性能[J]. 焊接学报, 2018, 39(7): 121 − 124. doi: 10.12073/j.hjxb.2018390188

    Wang Yanfang, Si Shuangshuang, Song Zengjin, et al. Microstructure and tribology behaviors of Zr-based amorphous coating on ZL101 by electro-spark deposition[J]. Transactions of the China Welding Institution, 2018, 39(7): 121 − 124. doi: 10.12073/j.hjxb.2018390188
    魏祥, 陈志国, 钟掘, 等. 电火花沉积制备Fe-8B-Mo非晶涂层的可行性[J]. 中国表面工程, 2016, 29(5): 16 − 23. doi: 10.11933/j.issn.1007-9289.2016.05.002

    Wei Xiang, Chen Zhiguo, Zhong Jue, et al. Feasibility on preparation of Fe-8B-Mo amorphous coatings by electrospark deposition[J]. China Surface Engineering, 2016, 29(5): 16 − 23. doi: 10.11933/j.issn.1007-9289.2016.05.002
    Wei X, Chen Z, Zhong J, et al. Facile preparation of nanocrytaline Fe2B coating by direct electro-spark deposition of coarse-grained Fe2B electrode material[J]. Journal of Alloys and Compounds, 2017, 717: 31 − 40.
    Hong X, Tan Y, Wang X, et al. Microstructure and wear resistant performance of TiN/Zr-base amorphous-nanocrystalline composite coatings on titanium alloy by electrospark deposition[J]. Surface & Coatings Technology, 2016, 305: 67 − 75.
    Wang X R, Wang Z Q, Li W S, et al. Preparation and microstructure of CuNiTiZr medium-entropy alloy coatings on TC11 substrate via electrospark-computer numerical control deposition process[J]. Materials Letters, 2017, 197: 143 − 145. doi: 10.1016/j.matlet.2017.03.109
    Frangini S, Masci A. A study on the effect of a dynamic contact force control for improving electrospark coating properties[J]. Surface & Coatings Technology, 2010, 204(16): 2613 − 2623.
    高莹, 韩敬华, 娄丽艳, 等. 电极力对Cr12MoV电火花沉积YG6工艺影响[J]. 焊接学报, 2014, 35(1): 45 − 48.

    Gao Ying, Han Jinghua, Lou Liyan, et al. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. Transactions of the China Welding Institution, 2014, 35(1): 45 − 48.
    Alexander V R, Orhan S. The use of bipolar current pulses in electrospark alloying of metal surfaces[J]. Surface and Coatings Technology, 2003, 168(2): 129 − 135.
    金柏冬, 曹国辉, 王振龙, 等. 空气中微细电火花沉积的工艺规律研究[J]. 中国机械工程, 2006, 17(2): 111 − 115. doi: 10.3321/j.issn:1004-132X.2006.02.001

    Jin Baidong, Cao Guohui, Wang Zhenlong, et al. Research on processing law of micro-EDD in air[J]. China Mechanical Engineering, 2006, 17(2): 111 − 115. doi: 10.3321/j.issn:1004-132X.2006.02.001
    韩红彪, 郭敬迪, 焦文清. 旋转电极电火花沉积/堆焊的放电机理[J]. 焊接学报, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129

    Han Hongbiao, Guo Jingdi, Jiao Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. Transactions of the China Welding Institution, 2019, 40(5): 67 − 72. doi: 10.12073/j.hjxb.2019400129
  • Related Articles

    [1]ZHENG Guangzhen, HAN Hongbiao, WANG Rui, ZHANG Peng. Electrode wobble technology of electro-spark deposition based on orthogonal tests[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 43-50, 136. DOI: 10.12073/j.hjxb.20231215001
    [2]HOU Yujie, HAN Hongbiao, YANG Xin, ZHENG Guangzhen. Development of a closed loop control system for discharge parameters of electric spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 53-59. DOI: 10.12073/j.hjxb.20221122003
    [3]LI Mengnan, HAN Hongbiao, LI Shikang, HOU Yujie. Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 71-77. DOI: 10.12073/j.hjxb.20220206001
    [4]WANG Shun, HAN Hongbiao, LI Shikang, LI Mengnan. Analysis of the influence of cylindrical electrode parameters on electro-spark deposition quality based on orthogonal experiment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 37-43. DOI: 10.12073/j.hjxb.20210131002
    [5]HAN Hongbiao, GUO Jingdi, JIAO Wenqing. Discharge mechanism of electro-spark deposition with rotary electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 67-72. DOI: 10.12073/j.hjxb.2019400129
    [6]XU Anyang, LIU Zhidong. Study of the TiN coating synthesized by EDM of flexible titanium electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 23-27,32.
    [7]GAO Ying, HAN Jinghua, LOU Liyan, LI Huan. Influence of electrode pressure on Cr12MoV electric-spark depositing YG6 process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 45-48.
    [8]LI Zhenying, DAI Liping, HOU Ming, HE Qiong. Automatic control of open arc surfacing system for the milling roller[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 82-84.
    [9]WANG Hua, ZHANG Yan-song, CHEN Guan-long. Wavelet analysis in servo-gun electrode displacement measurement and welding quality control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 21-24.
    [10]WU Yan-ming, Hidekazu Murakawa. Fuzzy control for resistance spotwelding ofaluminum alloy by monitoring electrode displacement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 111-114.
  • Cited by

    Periodical cited type(8)

    1. 李碧晗,王亦奇,汪瑞军. 微弧离子沉积技术研究现状与应用进展. 焊接. 2025(02): 55-65 .
    2. 刘宇,高洋,张诗奇,杜姗,张生芳,王紫光. 基于DDS的数字脉冲电火花沉积电源研究. 电加工与模具. 2024(01): 26-30+51 .
    3. 李晓迪,程战,邹斌华,王蒙. 电火花沉积技术研究现状及发展趋势. 电加工与模具. 2024(S1): 18-25 .
    4. 李梦楠,韩红彪,李世康,侯玉杰. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响. 焊接学报. 2023(01): 71-77+132-133 . 本站查看
    5. 廖逸,董仕节,李菊英,罗平,魏士凯,李伟杰. 电火花沉积工艺参数对涂层质量影响的研究现状. 武汉轻工大学学报. 2023(02): 89-96 .
    6. 侯玉杰,韩红彪,杨鑫,郑广振. 电火花沉积的放电参数闭环控制系统研制. 焊接学报. 2023(09): 53-59+132 . 本站查看
    7. 张建斌,朱程. 电火花沉积技术研究与应用进展. 材料导报. 2023(21): 221-234 .
    8. 王顺,韩红彪,李世康,李梦楠. 基于正交试验的圆柱电极参数对电火花沉积质量影响分析. 焊接学报. 2021(07): 37-43+100 . 本站查看

    Other cited types(2)

Catalog

    Article views (343) PDF downloads (11) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return