Citation: | SU Guoxing, SHI Yu, ZHU Ming, ZHANG Gang. Microstructure and properties of Inconel 718 cladding layer efficiently fabricated by laser metal deposition with hot wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240628003 |
Enhancing the performance of engineering components through surface modification or additive repair can effectively increase the service life of parts, in support of green and sustainable development strategy. In this study, Inconel 718 cladding layers were prepared on the surface of 316L stainless steel using the hot-wire laser metal deposition technology, with a line energy of 81.4 kJ/m and a wire deposition rate up to 3.1 kg/h. The microstructure, phase composition, microhardness, and wear resistance of the Inconel 718 cladding layer were investigated in detail. The results revealed that the microstructure of the Inconel 718 coatings was predominantly comprised of numerous columnar dendrites. The columnar dendrites grew vertically from the substrate surface or the boundaries between adjacent deposited tracks towards to the center of the coating. The γ-Ni phase was identified as the primary phase in the Inconel 718 cladding layer, with a "chain-like" and "island-like" distribution of Laves phase detected in the inter-dendritic regions. The average microhardness of the Inconel 718 coating was measured at 268.89 HV1, which was 37% higher than that of the 316L substrate. Moreover, the average friction coefficient of the Inconel 718 cladding layer was determined as 0.53, with a friction mass loss of 23.9% compared to the substrate of 316L stainless steel. The worn surface of the Inconel 718 coating was characterized by fine scratches and minor peeling, indicating an adhesive wear mechanism.
[1] |
张敏, 王新宝, 王浩军, 等. 激光熔覆TC4/Inconel 625/316L不锈钢梯度材料组织与性能[J]. 焊接学报, 2023, 44(7): 16 − 23. doi: 10.12073/j.hjxb.20220628001
Zhang Min, Wang Xinbao, Wang Haojun, et al. Microstructure and properties of laser clad TC4/Inconel 625/316L stainless steel gradient materials[J]. Transactions of the China Welding Institution, 2023, 44(7): 16 − 23. doi: 10.12073/j.hjxb.20220628001
|
[2] |
Dai R, Xu Z, Gao Q, et al. Effect of processing parameters on the microhardness, shear, and tensile properties of layer-cladded Inconel 718[J]. Journal of Materials Research and Technology, 2024, 28: 4725 − 4737. doi: 10.1016/j.jmrt.2024.01.080
|
[3] |
朱明冬, 吴冰洁, 曹立彦, 等. 304LN不锈钢表面激光熔覆钴基合金组织和性能[J]. 焊接学报, 2022, 43(8): 48 − 53. doi: 10.12073/j.hjxb.20220508001
Zhu Mingdong, Wu Bingjie, Cao Liyan, et al. Microstructure and properties of Co-based coatings on 304LN stainless steel fabricated by Laser cladding technology[J]. Transactions of the China Welding Institution, 2022, 43(8): 48 − 53 doi: 10.12073/j.hjxb.20220508001
|
[4] |
杨鑫, 韩红彪, 闫晨宵, 等. 送丝角度与方式对激光熔丝单道沉积层成形的影响[J]. 焊接学报, 2024, 45(4): 43 − 48. doi: 10.12073/j.hjxb.20230324002
Yang Xin, Han Hongbiao, Yan Chenxiao, et al. Influence of wire feeding angle and mode on the formation of single-track layers deposited by laser metal deposition with filler wire[J]. Transactions of the China Welding Institution, 2024, 45(4): 43 − 48. doi: 10.12073/j.hjxb.20230324002
|
[5] |
张杰, 李科, 吴志生, 等. 激光熔覆GH4169涂层组织特征及高温耐磨性研究[J]. 应用激光, 2022, 42(6): 36 − 42.
Zhang Jie, Li Ke, Wu Zhisheng, et al. Microstructure and high temperature wear properties of GH4169 coating fabricated via laser cladding[J]. Applied Laser, 2022, 42(6): 36 − 42.
|
[6] |
王涛, 王宁, 朱磊, 等. 激光扫描速度对IN718涂层组织与摩擦磨损性能的影响[J]. 热加工工艺, 2022, 51(10): 79 − 84.
Wang Tao, Wang Ning, Zhu Lei, et al. Effects of laser scanning speed on microstructure and wear resistance of Inconel 718 coatings[J]. Hot Working Technology, 2022, 51(10): 79 − 84.
|
[7] |
李栋, 张群莉, 张杰, 等. 不同气氛对激光熔覆IN718涂层形貌、组织与性能的影响[J]. 表面技术, 2018, 47(7): 185 − 190.
Li Dong, Zhang Qunli, Zhang Jie, et al. Influence of atmospheres on morphology, microstructure and properties of laser cladding IN718 coatings[J]. Surface Technology, 2018, 47(7): 185 − 190.
|
[8] |
贾晓慧, 胡亚宝, 宋欣灵, 等. 激光熔化沉积WC复合Inconel 718合金微观组织及磨损性能[J]. 表面技术, 2022, 51(12): 329 − 339.
Jia Xiaohui, Hu Yabao, Song Xinling, et al. Microstructure and wear performance of WC/Inconel 718 composites by laser melting deposition[J]. Surface Technology, 2022, 51(12): 329 − 339.
|
[9] |
吴军, 金杰, 朱冬冬, 等. TiC添加量对高能激光熔覆Inconel718基陶瓷涂层显微组织和摩擦磨损性能的影响[J]. 表面技术, 2021, 50(9): 225 − 235.
Wu Jun, Jin Jie, Zhu Dongdong, et al. Effect of TiC content on microstructure, friction and wear properties of Inconel 718 based ceramic coatings prepared by high energy laser cladding[J]. Surface Technology, 2021, 50(9): 225 − 235.
|
[10] |
姚喆赫, 钱泓宇, 余沛坰, 等. 送粉/送丝激光增材修复Inconel 718高温合金V形槽[J]. 焊接学报, 2023, 44(10): 71 − 78. doi: 10.12073/j.hjxb.20230307003
Yao Zhehe, Qian Hongyu, Yu Peijiong, et al. Repair of Inconel 718 V-groove using powder/wire-based laser additive manufacturing technology[J]. Transactions of the China Welding Institution, 2023, 44(10): 71 − 78. doi: 10.12073/j.hjxb.20230307003
|
[11] |
张大越, 伍新泽, 王一甲, 等. 激光熔丝Ti6Al4V合金成形工艺、微观组织及强韧性研究[J]. 钢铁钒钛, 2024, 45(1): 49 − 56. doi: 10.7513/j.issn.1004-7638.2024.01.008
Zhang Dayue, Wu Xinze, Wang Yijia, et al. Forming process, microstructure, strength and toughness of Ti6Al4V alloy by laser wire-feed additive manufacturing[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 49 − 56. doi: 10.7513/j.issn.1004-7638.2024.01.008
|
[12] |
张安琪, 王彦芳, 牛德文, 等. 热丝激光熔覆17−4PH涂层组织与腐蚀磨损性能[J]. 表面技术, 2022, 51(9): 379 − 386.
Zhang Anqi, Wang Yanfang, Niu Dewen, et al. Microstructure and tribocorrosion properties of hot-wire laser cladding 17-4PH coating[J]. Surface Technology, 2022, 51(9): 379 − 386.
|
[13] |
Stevens E L, Toman J, To A C, et al. Variation of hardness, microstructure, and Laves phase distribution in direct laser deposited alloy 718 cuboids[J]. Materials & Design, 2017, 119: 188 − 98.
|
[14] |
Zhai Y, Lados D A, Brown E J, et al. Understanding the microstructure and mechanical properties of Ti-6Al-4V and Inconel 718 alloys manufactured by laser engineered net shaping[J]. Additive Manufacturing, 2019, 27: 334 − 44. doi: 10.1016/j.addma.2019.02.017
|
[15] |
Zhao X, Chen J, Lin X, et al. Study on microstructure and mechanical properties of laser rapid forming Inconel 718[J]. Materials Science and Engineering A, 2008, 478: 119 − 24. doi: 10.1016/j.msea.2007.05.079
|
[16] |
Bambach M, Sizova I, Kies F, et al. Directed energy deposition of Inconel 718 powder, cold and hot wire using a six-beam direct diode laser set-up[J]. Additive Manufacturing, 2021, 47: 102269. doi: 10.1016/j.addma.2021.102269
|
[17] |
Yu X, Lin X, Liu F, et al. Influence of post-heat-treatment on the microstructure and fracture toughness properties of Inconel 718 fabricated with laser directed energy deposition additive manufacturing[J]. Materials Science and Engineering A, 2020, 798: 140092. doi: 10.1016/j.msea.2020.140092
|
[18] |
Li Z, Chen J, Sui S, et al. The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition[J]. Additive Manufacturing, 2020, 31: 100941. doi: 10.1016/j.addma.2019.100941
|
[19] |
Arrizubieta J I, Klocke F, Klingbeil N, et al. Evaluation of efficiency and mechanical properties of Inconel 718 components built by wire and powder laser material deposition[J]. Rapid Prototyping Journal, 2017, 23: 965 − 72. doi: 10.1108/RPJ-01-2016-0012
|
[20] |
Wang K, Liu Y, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 819: 152936. doi: 10.1016/j.jallcom.2019.152936
|
[21] |
Alonso U, Veiga F, Suárez A, et al. Characterization of Inconel 718® superalloy fabricated by wire arc additive manufacturing: effect on mechanical properties and machinability[J]. Journal of Materials Research and Technology, 2021, 14: 2665 − 76. doi: 10.1016/j.jmrt.2021.07.132
|
[22] |
Lan B, Wang Y, Liu Y, et al. The influence of microstructural anisotropy on the hot deformation of wire arc additive manufactured (WAAM) Inconel 718[J]. Materials Science and Engineering A, 2021, 823: 141733. doi: 10.1016/j.msea.2021.141733
|
[23] |
Van D, Dinda G P, Park J, et al. Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing[J]. Materials Science and Engineering A, 2020, 776: 139005. doi: 10.1016/j.msea.2020.139005
|
[24] |
Zhang K, Ju H, Xing F, et al. Microstructure and properties of composite coatings by laser cladding Inconel 625 and reinforced WC particles on non-magnetic steel[J]. Optics & Laser Technology, 2023, 163: 109321.
|
[25] |
Su G, Shi Y, Li G, et al. Highly-efficient additive manufacturing of Inconel 625 thin wall using hot-wire laser metal deposition: Process optimization, microstructure, and mechanical properties[J]. Optics & Laser Technology, 2024, 175: 110763.
|
[26] |
Su G, Shi Y, Li G, et al. High-efficiency fabrication of Inconel 625 coating for AISI 1045 carbon steel through laser cladding with hot wire: Microstructure and wear resistance[J]. Journal of Manufacturing Processes, 2023, 102: 622 − 631. doi: 10.1016/j.jmapro.2023.07.063
|
[27] |
王文权, 王苏煜, 陈飞, 等. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017 − 1026.
Wang Wenquan, Wang Suyu, Chen Fei, et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting[J]. Acta Metallurgica Sinica, 2021, 57(8): 1017 − 1026.
|
[28] |
Zhang H, Wang Y, Wang Z, et al. Enhancing microstructural control, tribological and electrochemical performances of laser powder bed fusion processed nickel superalloys through in-situ remelting[J]. Journal of Alloys and Compounds, 2024, 980: 173608. doi: 10.1016/j.jallcom.2024.173608
|
[29] |
杨浩, 李尧, 郝建民. 激光增材制造Inconel718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021 − 1-10. doi: 10.11896/cldb.20080021
Yang Hao, Li Yao, Hao Jianmin. Research progress of laser additively manufactured Inconel 718 superalloy[J]. Materials Reports, 2022, 36(6): 20080021 − 1-10. doi: 10.11896/cldb.20080021
|
[30] |
秦明军, 孙文磊, 管文虎, 等. 304不锈钢表面激光熔覆inconel625涂层组织与性能分析[EB/OL]. 表面技术, 2023-11-10.
Qin Mingjun, Sun Wenlei, Guan Wenhu, et al. Analysis of the organization and properties of laser clad incone1625 coating on 304 stainless steel surface[EB/OL]. Surface Technology, 2023-11-10.
|
[31] |
Su G, Shi Y, Li G, et al. Improving the deposition efficiency and mechanical properties of additive manufactured Inconel 625 through hot wire laser metal deposition[J]. Journal of Materials Processing Technology, 2023, 322: 118175. doi: 10.1016/j.jmatprotec.2023.118175
|
[32] |
Meng G, Gong Y, Zhang J, et al. Microstructure and mechanical properties of Inconel 718 thin walls prepared by laser direct energy deposition and selective laser melting[J]. Thin-Walled Structures, 2023, 193: 111284. doi: 10.1016/j.tws.2023.111284
|
[33] |
贺泊铭, 刘秀波, 张诗怡, 等. Inconel 718合金激光熔覆Stellite3/Ti3SiC2复合涂层摩擦学性能研究[J]. 摩擦学学报, 2023, 43(6): 606 − 615.
He Boming, Liu Xiubo, Zhang Shiyi, et al. Investigation on Tribological Properties of Stellite3/Ti3SiC2 Composite Coatings on Inconel 718 Alloy by Laser Cladding[J]. Tribology, 2023, 43(6): 606 − 615.
|
[34] |
Asghar O, Li-Yan L, Yasir M, et al. Enhanced Tribological Properties of LA43M Magnesium Alloy by Ni60 Coating via Ultra-High-Speed Laser Cladding[J]. Coatings, 2020, 10(7): 638. doi: 10.3390/coatings10070638
|
[1] | LAN Hu, ZHANG Huajun, CHEN Ajing, CHEN Shanben. Numerical simulation on dynamic process and thermal physical properties of narrow gap MAG vertical welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 77-82. |
[2] | WANG Lei, HUANG Songtao, JIAO Xiangdong, GU Xiaoman. Stability of hyperbaric pulsed MAG welding arc and its compensation by higher arc voltage[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 63-66. |
[3] | ZHENG Senmu, GAO Hongming, LIU Xin. Arc behavior of MAG welding with strip electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 97-100. |
[4] | LI Jing, LI Fang, ZHU Wei, LIAO Jianxiong, QIAN Luhong. A new seam location extraction method for pipe-line backing welding of MAG based on passive optical vision sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 69-72. |
[5] | LI Zhiyong, WANG Wei, WANG Xuyou, LI Huan. Analysis of laser-MAG hybrid welding plasma radiation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 21-24,28. |
[6] | WEN Yuanmei, HUANG Shisheng, WU Kaiyuan, LAO Zhengping. Welding behavior of two current phase relations for twin-wire pulsed MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 59-62,66. |
[7] | WANG Jia-you, GUO Hong-bin, YANG Feng. A new rotating arc process for narrow gap MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (10): 65-67. |
[8] | BAO Ye-feng, ZHOU Yun, WU Yi-xiong, LOU Song-nian. Instant unstable phenomenon of rotational spray transfer in high-current MAG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 73-76. |
[9] | Sun Lunqiang, Wu Lin. A Regression Model of Weld Bead Geometry for Pulsed MAG Welding in Multipositions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (4): 249-257. |
[10] | Jiang Weiyan, Zhang Jiuhai, Zhao Chongyi. Behaviors of metal transfer in pulsed MIG(MAG) welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (1): 50-58. |