Citation: | LI Guangbao, GAO Dong, LU Yong, PING Hao, ZHOU Yuanyuan, WANG Fei. Design of multi-degree-of-freedom digital radiographic testing system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 14-21. DOI: 10.12073/j.hjxb.20221220003 |
At present, the traditional film photography is used to detect the welding seam of the bottom, barrel and ring parts of the launch vehicle, which has the disadvantages of low automation, complicated process and low digitization, and the negative film can't be preserved for a long time, so it can't meet the fast-paced development requirements of the current multi-type rockets. A robot-based multi-degree-of-freedom digital radiographic inspection system was developed by using the nondestructive inspection method combining X-ray and imaging board, using double seven-axis robot and synchronous lifting turntable as motion actuators, and using ADS multi-thread communication and Ethercat bus to realize the real-time communication among the controller, imaging inspection software, X-ray machine, robot and synchronous lifting turntable. Through the path planning of the motion actuator and the nondestructive inspection of weld seam imaging, the inspection automation of circumferential seam, longitudinal seam and variable curvature weld seam of products is realized. Compared with the traditional film photography, the inspection efficiency is increased by 5 times and the inspection accuracy is increased by 42%, which meets the current inspection work of multi-model rocket tanks.
[1] |
李金鑫. 火箭大喷管X射线检测系统的研制[D]. 哈尔滨, 哈尔滨工业大学, 2018.
Li Jinxin. Development of X-ray inspection system for large rocket nozzle [D]. Harbin , Harbin Institute of Technology, 2018.
|
[2] |
郑春, 吴昊. 自动洗片技术在大型炼化装置射线检测底片处理中的应用[J]. 焊接技术, 2015, 44(9): 84 − 85.
Zheng Chun, Wu Hao. Application of automatic film processing technology in radiographic film processing of large-scale refinery units[J]. Welding Technology, 2015, 44(9): 84 − 85.
|
[3] |
宋建岭, 李超. 搅拌摩擦焊在运载火箭贮箱制造中的应用与发展[J]. 焊接, 2018(5): 21 − 27.
Song Jianling, Li Chao. Application of FSW technology to tank manufacturing of launch vehicle and its development[J]. Welding & Joining, 2018(5): 21 − 27.
|
[4] |
刘立安, 赵舵, 陆伟, 等. 运载火箭贮箱箱底搅拌摩擦焊工艺研究[J]. 上海航天(中英文), 2020, 37(S2): 249 − 252.
Liu Li’an, Zhao Duo, Lu Wei, et al. Application of friction stir welding in launch vehicle tank dome[J]. Aerospace Shanghai(Chinese & English), 2020, 37(S2): 249 − 252.
|
[5] |
章清乐, 刘松平, 刘菲菲. 大型复合材料蜂窝夹芯结构X射线数字成像自动化快速扫描检测技术[J]. 航空制造技术, 2022(13): 78 − 83.
Zhang Qingle, Liu Songping, Liu Feifei. Fast inspection of large-scale composite honeycomb sandwich structures using automated X-ray digital radiography scanning imaging technique[J]. Aviation Manufacturing Technology, 2022(13): 78 − 83.
|
[6] |
徐莹. 焊缝图像缺陷无损检测系统研究[D]. 西安, 西安工业大学, 2014.
Xu Ying. Research on nondestructive testing system of weld image defects [D]. Xi 'an, Xi 'an University of Technology, 2014.
|
[7] |
林尚扬, 杨学勤, 徐爱杰, 等. 机器人智能化焊接技术发展综述及其在运载火箭贮箱中的应用[J]. 上海航天(中英文), 2021, 38(3): 8 − 17.
Lin Shangyang, Yang Xueqin, Xu Aijie, et al. Overview of development of robot intelligent welding technology and its application in launch vehicle tank[J]. Shanghai Aerospace (Chinese & English), 2021, 38(3): 8 − 17.
|
[8] |
闫明巍, 王永宏. 贮箱焊缝的射线底片影像识别方法研究[C]//第二届中国航天质量论坛, 北京, 2008.
Yan Mingwei, Wang Yonghong. Research on X-ray film image recognition method of tank weld [C]//The 2nd China Aerospace Quality Forum, Beijing, 2008.
|
[9] |
孙文斐. 基于射线检测的焊缝缺陷自动识别技术研究[J]. 电子测试, 2022, 36(4): 28 − 30.
Sun Wenfei. Research on automatic recognition technology of weld defects based on radiographic inspection[J]. Electronic Test, 2022, 36(4): 28 − 30.
|
[10] |
肖辉. 焊接缺陷射线DR图像自动检测与识别系统研究[D]. 南昌, 南昌航空大学, 2017.
Xiao Hui. Research on automatic detection and recognition system of welding defects by X-ray DR image [D]. Nanchang, Nanchang Hangkong University, 2017.
|
[11] |
王建, 张弓, 何文杰, 等. 基于V-REP的双机器人协同运动仿真与实验研究[J]. 现代制造工程, 2021(12): 21 − 27.
Wang Jian, Zhang Gong, He Wenjie, et al. Simulation and experimental research of dual robot cooperative motion based on V-REP[J]. Modern Manufacturing Engineering, 2021(12): 21 − 27.
|
[12] |
陈力啸, 傅云, 朱伟东. 双机器人协同精准铺丝技术[J]. 航空制造技术, 2022(13): 70 − 77.
Chen Lixiao, Fu Yun, Zhu Weidong. Cooperative robots automatic fiber placement[J]. Aviation Manufacturing Technology, 2022(13): 70 − 77.
|
[13] |
付兴, 李月, 徐海波, 等. 火箭贮箱喷涂机器人直接示教运动感知器设计与分析[J]. 传感器与微系统, 2021, 40(7): 78 − 80.
Fu Xing, Li month, Xu Haibo, et al. Design and analysis of direct teaching motion sensor for rocket tank spraying robot[J]. Transducer and Microsystem Technologies, 2021, 40(7): 78 − 80.
|
[14] |
孙振, 王涛, 薛智龙. 大型三维复杂构件双机器人协同焊接智能路径规划方法[J]. 机床与液压, 2020, 48(11): 13 − 20.
Sun Zhen, Wang Tao, Xue Zhilong. Intelligent path planning method for collaborative welding large-scale three-dimensional complex component with dual robot[J]. Machine Tool and Hydraulic, 2020, 48(11): 13 − 20.
|
[15] |
田昊, 唐道锋, 宋玉宝, 等. 双轴同步运动系统滑模PID交叉耦合控制[J]. 机械设计与制造, 2022(4): 178 − 182. doi: 10.3969/j.issn.1001-3997.2022.04.040
Tian Hao, Tang Daofeng, Song Yubao, et al. Sliding mode PID cross-coupling control of biaxial synchronous system[J]. Mechanical Design and Manufacturing, 2022(4): 178 − 182. doi: 10.3969/j.issn.1001-3997.2022.04.040
|
[1] | LE Jian, ZHANG Hua, ZHANG Qiqi, WU Jinhao. Overhead weld tracking by robots based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 56-60. |
[2] | YIN Ziqiang, ZHANG Guangjun, ZHAO Huihui, YUAN Xin, WU Lin. Design of human-machine interactive robotic arc welding remanufacturing system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 69-72. |
[3] | SHEN Junqi, HU Shengsun, FENG Shengqiang, GAO Zhonglin. Bead geometry prediction based on SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 103-106. |
[4] | ZHOU Lü, CHEN Shan-ben, LIN Tao, CHEN Wen-jie. Autonomous seam tracking based on local vision in arc robotic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 49-52. |
[5] | YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45. |
[6] | CAO Hai-peng, ZHAO Xi-hua, ZHAO He. Intelligent process design of resistance spot welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 21-24. |
[7] | CAO Hai-peng, ZHAO Xi-hua, ZHAO Lei. An intelligent inference for resistance spot welding procedure parameters on CBR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 1-3,14. |
[8] | CHEN Jun-mei, LU Hao, WANG Jian-hua, CHEN Wei-xin, HAO Da-jun. Effect of Mesh Sizes on Welding Deformation Prediction Precision of Buicks Underframe Assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 33-35,39. |
[9] | YE Feng, SONG Yong-lun, LI Di, CHEN Fu-gen. On-line Quality Monitoring in Robot Arc Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 5-7. |
[10] | Zhao Xihua, Wang Chenyu. Parameter Selection Based on Expert System and Artificial Neural Network in Resistance Spot Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 3-8. |
1. |
鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .
![]() |