Citation: | PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002 |
刘全明, 龙伟民, 傅莉, 等. 氢致TA10钛合金焊接接头拉伸性能演变[J]. 焊接学报, 2020, 41(12): 20 − 24.
Liu Quanming, Long Weimin, Fu Li, et al. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. Transactions of the China Welding Institution, 2020, 41(12): 20 − 24.
|
房中行, 史长根, 冯柯, 等. TA2-1060-TA2复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2019, 40(9): 87 − 92.
Fang Zhonghang, Shi Changgen, Feng Ke, et al. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. Transactions of the China Welding Institution, 2019, 40(9): 87 − 92.
|
刘坤, 李亚江, 王娟, 等. 填丝TIG焊TA15钛合金与18-8钢接头的微观组织[J]. 焊接学报, 2017, 38(2): 57 − 60.
Liu Kun, Li Yajiang, Wang Juan, et al. Microstructure of TA15 alloy and 18-8 stainless steel joint by TIG with filler metal[J]. Transactions of the China Welding Institution, 2017, 38(2): 57 − 60.
|
Ghosh M, Das S, Banarjee P S. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium–stainless steel couple[J]. Materials Science & Engineering A, 2005, 390(1): 217 − 226.
|
Shiue R K, Wu S K, Shiue J Y, et al. Infrared brazing of Ti-6Al-4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer(s)[J]. Materials Science and Engineering A, 2008, 488(1): 186 − 194.
|
Isaev V I, Cherepanov A N, Shapeev V P. Numerical study of heat modes of laser welding of dissimilar metals with an intermediate insert[J]. International Journal of Heat and Mass Transfer, 2016, 99: 711 − 720. doi: 10.1016/j.ijheatmasstransfer.2016.04.019
|
Wang T, Zhang B G, Wang H Q, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1498 − 1504. doi: 10.1007/s11665-014-0897-8
|
Yuan X J, Tang K, Deng Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer[J]. Materials and Design, 2013, 52: 359 − 366. doi: 10.1016/j.matdes.2013.05.057
|
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61(4): 1 − 93.
|
侯光远. 基于焊缝金属高熵化的钛/钢TIG焊研究[D]. 西安: 西安理工大学, 2015.
Hou Guangyuan. Research on TIG welding of titanium/steel based on high entropy of weld metal [D]. Xi'an: Xi'an University of Technology, 2015.
|
Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100−xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225
|
翟秋亚, 刘帅宾, 杨全虎, 等. Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9储能焊接头组织与性能[J]. 焊接学报, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001
Zhai Qiuya, Liu Shuaibin, Yang Quanhu, et al. Microstructure and properties of Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9 energy storage welding joint[J]. Transactions of the China Welding Institution, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001
|
Kulkarni R, Murty B S, Srinivas V. Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 746: 194 − 199. doi: 10.1016/j.jallcom.2018.02.275
|
Zhang M, Zhang L, Fan J, et al. Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content[J]. Materials Science and Engineering A, 2018, 733: 299 − 306. doi: 10.1016/j.msea.2018.07.069
|
Xin Xian, Lin Lijing, Zhong Zhihong, et al. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys[J]. Materials Science & Engineering A, 2018, 713: 134 − 140.
|
Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys & Compounds, 2013, 553: 216 − 220.
|
[1] | SUN Zhenbang, LIU Lele, TONG Jiahui, HAN Yongquan, CHEN Furong. Numerical analysis of MIG welding of aluminum alloy based on improved heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 111-116, 128. DOI: 10.12073/j.hjxb.20220325007 |
[2] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[3] | ZHOU Guangtao, GUO Guanglei, FANG Hongyuan. Numerical simulation of temperature field during laser-induced welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 22-26. |
[4] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[5] | ZHANG Huajun, ZHANG Guangjun, CAI Chunbo, WANG Junheng, WU Lin. Numerical simulation on temperature field of dynamic welding processing with weaving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 69-72,76. |
[6] | XIONG Zhijun, LI Yongqiang, ZHAO Xihua, LI Min, ZHANG Weihua. Numerical simulation of temperature field in deep penetration laser welding under hot and press condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 41-44. |
[7] | LI Hong-ke, SHI Qing-yu, ZHAO Hai-yan, LI Ting. Auto-adapting heat source model for numerical analysis of friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 81-85. |
[8] | DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100. |
[9] | MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |