Processing math: 100%
Advanced Search
ZHAO Pengkang, TANG Cheng, PU Zunyan, LI Yan, LI Shujuan. Microstructure and tensile properties of 5356 aluminum alloy by TIG wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 65-70, 77. DOI: 10.12073/j.hjxb.20190925002
Citation: ZHAO Pengkang, TANG Cheng, PU Zunyan, LI Yan, LI Shujuan. Microstructure and tensile properties of 5356 aluminum alloy by TIG wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 65-70, 77. DOI: 10.12073/j.hjxb.20190925002

Microstructure and tensile properties of 5356 aluminum alloy by TIG wire arc additive manufacturing

More Information
  • Received Date: September 24, 2019
  • Available Online: September 26, 2020
  • The microstructure and properties of 5 356 aluminum alloy sample manufactured by TIG wire arc additive manufacturing in the different regions were studied. The results showed that interlayer of sample alternated with the deposition layer horizontally, the width of deposition layer at the bottom was the largest (~2.4 mm), and the middle stable region was the smallest (~1.6 mm). The deposition layer consisted of equiaxial grains, and the black second phase β-Al3Mg2 and a small amount of intermetallic compounds Mg2Si and (FeMn)Al6 diffused on the gray matrix. A large number of pores and shrinkage holes appeared at the interlayer. The deposition layer at the bottom had the smallest grain size, but the interlayer had the most defects. The strength and plasticity were approximately equal in the horizontal direction at the different regions (Rm=274MPa,A=32.3%). The strength in vertical direction was approximately equal to that in horizontal direction, but the elongation dropped to 26%. The tensile fracture was mainly composed of equiaxial dimples in both directions. The hardness of the deposition layer at the three regions was stable, and the hardness at the bottom was slightly higher than that of the rest regions, while the hardness of the interlayer fluctuated significantly.
  • Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12): 3315 − 3322.
    Zhang B, Wang C, Wang Z, et al. Microstructure and properties of Al alloy ER5183 deposited by variable polarity cold metal transfer[J]. Journal of Materials Processing Technology, 2019, 267: 167 − 176. doi: 10.1016/j.jmatprotec.2018.12.011
    贾金龙, 赵玥, 董明晔, 等. 基于温度函数法的铝合金电弧增材制造残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(9): 1 − 6. doi: 10.12073/j.hjxb.2019400001

    Jia Jinlong, Zhao Yue, Dong Mingye, et al. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. Transactions of the China Welding Institution, 2019, 40(9): 1 − 6. doi: 10.12073/j.hjxb.2019400001
    张兆栋, 曾庆文, 刘黎明, 等. 铝合金激光诱导MIG电弧增材制造成形尺寸规律[J]. 焊接学报, 2019, 40(8): 7 − 12. doi: 10.12073/j.hjxb.2019400146

    Zhang Zhaodong, Zeng Qingwen, Liu Liming, et al. Forming regularity of aluminum alloy formed by laser induced MIG arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(8): 7 − 12. doi: 10.12073/j.hjxb.2019400146
    Ortega A , Galvan L, Salem M, et al. Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a cold metal transfer process[J]. Science and Technology of Welding and Joining, 2019, 24: 538 − 547. doi: 10.1080/13621718.2018.1564986
    Wang H, Jiang W, Ouyang J, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148: 93 − 102. doi: 10.1016/j.jmatprotec.2004.01.058
    刘一搏, 孙清洁, 姜云禄, 等. 基于冷金属过渡技术快速成形工艺[J]. 焊接学报, 2014, 35(7): 1 − 4.

    Liu Yibo, Sun Qingjie, Jiang Yunlu, et al. Rapid prototyping process based on cold metal transfer arc welding technology[J]. Transactions of the China Welding Institution, 2014, 35(7): 1 − 4.
    柏久阳, 范成磊, 杨雨晨, 等. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征[J]. 焊接学报, 2016, 37(6): 124 − 128.

    Bai Jiuyang, Fan Chenglei, Yang Yuchen, et al. Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition[J]. Transactions of the China Welding Institution, 2016, 37(6): 124 − 128.
    李承德, 顾惠敏, 王伟, 等. 电弧增材制造ZL114A铝合金的组织与性能[J]. 稀有金属材料与工程, 2019, 48(9): 2917 − 2922.

    Li Chengde, Gu Huimin, Wang Wei, et al. Microstructure and properties of ZL114A aluminum alloy prepared by wire arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2917 − 2922.
    柏久阳, 王计辉, 林三宝, 等. 电弧増材制造厚壁结构焊道间距计算策略[J]. 机械工程学报, 2016, 52(10): 97 − 102.

    Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Model for multi-beads overlapping calculation in GTA-additive manufacturing[J]. Journal of Mechanical Engineering, 2016, 52(10): 97 − 102.
    李俐群, 孟圣昊, 彭进. 铝合金激光焊接熔池中气泡运动与气孔相关性分析[J]. 焊接学报, 2018, 39(6): 1 − 6. doi: 10.12073/j.hjxb.2018390287

    Li Liqun, Meng Shenghao, Peng Jin. Analysis of correlation between bubble motion and weld porosity in laser welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(6): 1 − 6. doi: 10.12073/j.hjxb.2018390287
    Matsunawa A, Mizutani M, Katayama S, et al. Porosity formation mechanism and its prevention in laser welding[J]. Welding International, 2003, 17(6): 431 − 437. doi: 10.1533/wint.2003.3138
    Han W, Yu M, Fang X, et al. Effect of flame heating pass on microstructure and properties of A6N01 aluminum alloy welded joint[J]. China Welding, 2017, 26(1): 21 − 28.
  • Related Articles

    [1]2022-7 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 1-8.
    [2]2021-11 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 1-6.
    [3]2020-12 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 98-103.
    [4]2020-8 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 97-102.
    [5]2020-6 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 97-102.
    [6]2020-5 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 97-102.
    [7]2020-3 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 97-102.
    [8]2020-2 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 97-102.
    [9]2020-1 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 97-102.
    [10]2019-3 Abstract[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 161-168.

Catalog

    Article views (777) PDF downloads (76) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return