Advanced Search
QU Shenquan, QIN Guoliang, GAO Yuan, XIAO Guodong. On-line solution treatment process for welding production of 304 stainless steel thin-walled tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 107-114. DOI: 10.12073/j.hjxb.20220125001
Citation: QU Shenquan, QIN Guoliang, GAO Yuan, XIAO Guodong. On-line solution treatment process for welding production of 304 stainless steel thin-walled tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 107-114. DOI: 10.12073/j.hjxb.20220125001

On-line solution treatment process for welding production of 304 stainless steel thin-walled tube

More Information
  • Received Date: January 24, 2022
  • Available Online: December 18, 2022
  • The steel strip is made into steel tube by rolling and welding step by step. The hardness of the steel tube increases due to the early work hardening, which will significantly affect the secondary forming processing of the tube. In this paper, the effects of solution temperatures, solution cooling conditions and types of solution shielding gas on the microstructure and properties of 304 stainless steel thin-walled tube were studied by building an on-line solution treatment test platform in the 304 stainless steel tube production line. The results show that increasing the solution treatment temperature in the experimental temperature range will increase the grain size of the heat-affected zone and the base metal and promote the solid solution of carbides in and along the austenite grains, so as to significantly reduce the hardness of the heat-affected zone and the base metal. The ferrite distributed along the austenite grain boundary in the weld zone is partially dissolved, and the grain size increases to a small extent, so the hardness of the weld zone decreases slightly. However, adjusting the cooling conditions has little effect on the hardness of the weld and base metal. When argon is used as the solution treatment protective gas, the average hardness of the base metal of the tube can be reduced to 188.7 HV, which is 11.0% lower than that without solution treatment. When hydrogen is used as solution treatment protective gas, the average hardness can be reduced to 182.7 HV, which is 13.8% lower than that without solution treatment. Through microstructure observation, hardness test, flaring and flattening mechanical properties test, the solution-treated tubes under the two protective gas conditions all meet the national standards.
  • 王元清, 袁焕鑫, 石永久, 等. 不锈钢结构的应用和研究现状[J]. 钢结构, 2010, 25(2): 1 − 12. doi: 10.3969/j.issn.1007-9963.2010.02.001

    Wang Yuanqing, Yuan Huanxin, Shi Yongjiu, et al. Application and research status of stainless steel structure[J]. Steel Construction, 2010, 25(2): 1 − 12. doi: 10.3969/j.issn.1007-9963.2010.02.001
    韩豫, 陈学东, 刘全坤, 等. 奥氏体不锈钢应变强化工艺及性能研究[J]. 机械工程学报, 2012, 48(2): 6.

    Han Yu, Chen Xuedong, Liu Quankun, et al. Study of strain strengthening process and properties of austenitic stainless steel[J]. Journal of Mechanical Engineering, 2012, 48(2): 6.
    秦国梁, 马宏, 耿培皓, 等. 45钢/304不锈钢连续驱动摩擦焊接工艺[J]. 焊接学报, 2015, 36(8): 1 − 4.

    Qin Guoliang, Ma Hong, Geng Peihao, et al. 45 steel/304 stainless steel continuous drive friction welding process[J]. Transactions of the China Welding Institution, 2015, 36(8): 1 − 4.
    王延来, 刘世程, 刘德义, 等. 304奥氏体不锈钢固溶渗氮的研究[J]. 金属热处理, 2005, 30(5): 8 − 11. doi: 10.3969/j.issn.0254-6051.2005.05.003

    Wang Yanlai, Liu Shicheng, Liu Deyi, et al. Study of solid solution nitriding of 304 austenitic stainless steel[J]. Heat Treatment of Metals, 2005, 30(5): 8 − 11. doi: 10.3969/j.issn.0254-6051.2005.05.003
    Glage A, Weidner A, Biermann H. Cyclic deformation behaviour of three austenitic cast CrMnNi TRIP/TWIP steels with various ni content[J]. Steel Research International, 2011, 82(9): 1040 − 1047. doi: 10.1002/srin.201100080
    刘巍. SA213-T P304奥氏体不锈钢固溶处理技术及应用[J]. 机械管理开发, 2014(4): 47 − 48. doi: 10.3969/j.issn.1003-773X.2014.04.016

    Liu Wei. SA213-T P304 austenitic stainless steel solid solution treatment technology and applications[J]. Mechanical Management and Development, 2014(4): 47 − 48. doi: 10.3969/j.issn.1003-773X.2014.04.016
    周慧, 李锡栋. 固溶处理对304不锈钢显微组织及力学性能的影响[J]. 热加工工艺, 2018, 47(24): 234 − 235.

    Zhou Hui, Li Xidong. Effect of solid solution treatment on microstructure and mechanical properties of 304 stainless steel[J]. Hot Working Technology, 2018, 47(24): 234 − 235.
    史勤益, 颜余仁, 赵先锐, 等. 304奥氏体不锈钢的热处理工艺研究[J]. 科学技术与工程, 2011, 11(24): 5910 − 5913. doi: 10.3969/j.issn.1671-1815.2011.24.039

    Shi Qinyi, Yan Yuren, Zhao Xianrui, et al. Heat treatment process study of austenitic stainless steel[J]. Science Technology and Engineering, 2011, 11(24): 5910 − 5913. doi: 10.3969/j.issn.1671-1815.2011.24.039
    郭国林, 刘鹏, 杨莉, 等. 热处理对304不锈钢板激光焊接接头组织和力学性能的影响[J]. 热加工工艺, 2016, 45(21): 194 − 196.

    Guo Guolin, Liu Peng, Yang Li, et al. The effect of heat treatment on the organization and mechanical properties of laser welded joints of 304 stainless steel sheet[J]. Hot Working Technology, 2016, 45(21): 194 − 196.
    唐峰. 热处理工艺对管用304不锈钢组织与性能的影响[D]. 成都: 成都理工大学, 2016.

    Tang Feng. The effect of heat treatment process on the organization and properties of 304 stainless steel for pipes[D]. Chengdu: Chengdu University of Technology, 2016.
    熊剑. 304不锈钢K-TIG焊电弧特性及接头性能研究[D]. 南昌: 南昌航空大学, 2019.

    Xiong Jian. Study of K-TIG welding arc characteristics and joint performance of 304 stainless steel[D]. Nanchang: Nanchang Hangkong University, 2019.
    Lippod J C, Savage W F. Solidification of austenitic stainless steel weldments: part 2 - the effect of alloy composition on ferrite morphology[J]. Welding Journal, 1980, 59(2): 48s − 58s.
    EI-Batahyg A M. Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels[J]. Materials Letters, 1997, 32(2-3): 155 − 163. doi: 10.1016/S0167-577X(97)00023-2
    Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models - ScienceDirect[J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315 − 330. doi: 10.1016/0022-5096(79)90032-2
    王国强. 中厚板304不锈钢等离子弧焊接接头组织和性能的研究[D]. 苏州: 苏州大学, 2019.

    Wang Guoqiang. Study on the organization and properties of plasma arc welded joints of 304 stainless steel in medium thickness plate[D]. Suzhou: Soochow University, 2019.
    孙伟, 王萍. 固溶处理对新型奥氏体不锈钢焊接接头性能的影响[J]. 电焊机, 2010(2): 128 − 131. doi: 10.3969/j.issn.1001-2303.2010.02.031

    Sun Wei, Wang Ping. Effect of solid solution treatment on the properties of new austenitic stainless steel welded joints[J]. Electric Welding Machine, 2010(2): 128 − 131. doi: 10.3969/j.issn.1001-2303.2010.02.031
    Ma H, Qin G, Geng P, et al. Effect of post-weld heat treatment on friction welded joint of carbon steel to stainless steel[J]. Journal of Materials Processing Technology, 2016, 277: 24 − 33.
    上海市热处理协会. 实用热处理手册[M]. 上海: 上海科学技术出版社, 2009.

    Shanghai Heat Treatment Association. Practical heat treatment handbook[M]. Shanghai: Shanghai Science and Technology Press, 2009.
  • Related Articles

    [1]MA Jingping, CAO Rui, ZHOU Xin. Development on improving fatigue life of high strength steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 115-128. DOI: 10.12073/j.hjxb.20230711001
    [2]YU Jingdan, WANG Ru, WU Wenzhi, HU Zixiang, ZHANG Chulei, WANG Guoxin, YAN Yan. Reliability prediction and design optimization of BGA solder joint based on multi-fidelity surrogate model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 10-16. DOI: 10.12073/j.hjxb.20230205002
    [3]FENG Chao, ZHAO Lei, XU Lianyong, HAN Yongdian. Investigation on fatigue life prediction approach of welded joints via integrated data-driven method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 8-13, 51. DOI: 10.12073/j.hjxb.20221116002
    [4]WANG Lei, LI Dongxia, HUI Li, SHEN Zhenxin, ZHOU Song. Fatigue crack propagation behavior and life prediction of 2024-T4 aluminum alloy FSW joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 77-83. DOI: 10.12073/j.hjxb.20220507002
    [5]ZHAO Lei, FENG Guocai, XU Lianyong, HAN Yongdian, JING Hongyang. Creep-fatigue properties and life prediction method of new martensitic heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 1-7. DOI: 10.12073/j.hjxb.20220101003
    [6]DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003
    [7]ZHANG Nan<sup>1,2</sup>, TIAN Zhiling<sup>2</sup>, DONG Xianchun<sup>1</sup>, ZHANG Xi<sup>1</sup>, YANG Jianwei<sup>1</sup>. Research on relationship between ΔKth and fatigue life of heat-affected coarse grain zone in Q960E[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 106-110. DOI: 10.12073/j.hjxb.2018390185
    [8]ZOU Li, YANG Xinhua, SUN Yibo, DENG Wu. Prediction of fatigue life of titanium alloy welded joints based on RS_RBFNN[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 25-29,78.
    [9]LI Yongkui, LU Shanping, LI Dianzhong, KAJI Yoshiyuki. Life prediction of welded joint in core shroud of BWR due to SCC failure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 33-38.
    [10]Yu Weicheng, Yuan Jincai, Liu Mingqing. EFFECT OF FLAME SPRAYING WELDING ON FATIGUE LIFE OF CARBON STEEL[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 181-187.
  • Cited by

    Periodical cited type(20)

    1. 王康龙,常云峰,刘晓芳,张陕南,付毅帅,薛行雁. 超高速激光熔覆耐腐蚀涂层研究进展. 电焊机. 2025(02): 85-94 .
    2. 武鹏博,冯志强,方乃文,路全彬,黄瑞生,廖志谦,孙徕博,秦建,黎泉,常云峰,牛董山钰. 厚壁钛合金激光填丝焊接接头组织性能及应力分析. 稀有金属材料与工程. 2025(02): 401-412 .
    3. 吴奇隆,赵宏伟,张雷,孙志鹏,李宇佳,程战,袁世成. 激光重熔对金刚石/镍基复合涂层组织性能的影响. 稀有金属材料与工程. 2025(02): 437-444 .
    4. 黄玲玲,钟素娟,孙元,胡晓勇,吕晓春,于华. Ni元素对B60AgCuSnIn钎料微观组织及接头性能的影响. 精密成形工程. 2025(03): 110-115 .
    5. 黎海兵,路全彬,黄俊兰,Renan Siqueira,丁宗业. 异种金属焊接结构件多轴动态力学性能测试平台设计. 精密成形工程. 2025(03): 31-40 .
    6. 龙伟民,乔瑞林,秦建,宋晓国,李鹏远,樊喜刚,刘代军. 异质材料钎焊技术与应用研究进展. 焊接学报. 2025(04): 1-21 . 本站查看
    7. 王星星,田家豪,武胜金,康克家,凌自成,杜全斌,温国栋. WC含量对WC增强镍基复合涂层界面组织的影响. 焊接学报. 2024(01): 40-46+131-132 . 本站查看
    8. 王星星,李阳,武胜金,杜全斌,贾连辉,李帅,陈小明. 镍/碳化钨钎涂层界面行为与力学性能. 稀有金属材料与工程. 2024(01): 215-222 .
    9. 詹怡阳,汪勇杰,栗正新. 金刚石耐磨涂层在水轮机叶片上的应用研究进展. 超硬材料工程. 2024(04): 25-31 .
    10. 冯健,姜超,侯国亭,张冠星,龙伟民. 异种金属爆炸焊接工艺参数计算与实验验证. 材料导报. 2024(S2): 467-470 .
    11. 秦建,杨骄,刘攀,刘大双,卢洪波,廖清泉,常云峰. Microstructure and properties of induction brazing nickel base/WC composite coating. China Welding. 2023(01): 27-34 .
    12. 杨洋,周俞廷,赵亦嘉. 表面织构化对铜基钎料润湿流铺的影响研究. 电焊机. 2023(04): 120-125 .
    13. 龙伟民,刘大双,吴爱萍,钟素娟,王德成. 金刚石粒度及添加量对大气环境感应钎涂层耐磨性的影响. 机械工程学报. 2023(12): 225-235 .
    14. 钟斌,王攀,李飞,李海宁,赵升吨. 感应熔覆技术研究现状及发展. 精密成形工程. 2023(08): 191-203 .
    15. 吴奇隆,董显,张雷,钟素娟,陈治强,贾连辉,罗灵杰. WC对感应钎涂金刚石涂层组织及性能的影响. 金刚石与磨料磨具工程. 2023(05): 579-585 .
    16. 姜超,龙伟民,钟素娟,樊喜刚,廖志谦,魏永强. TA1/Q235R爆炸焊接复合板界面组织及力学性能. 电焊机. 2023(11): 65-70 .
    17. 孙志鹏,张雷,朱晨颖,盛惠朋,李宇佳,钱志敏,孙华为. 农业旋耕刀具耐磨降阻减粘技术研究. 电焊机. 2023(12): 51-57 .
    18. 秦建,杨骄,龙伟民,钟素娟,刘攀,杨浩哲. 金刚石及其复合材料增材技术研究进展. 机械制造文摘(焊接分册). 2023(06): 1-11 .
    19. 秦建,杨骄,龙伟民,钟素娟,刘攀,杨浩哲. 金刚石及其复合材料增材技术研究进展. 焊接学报. 2022(08): 102-112+120 . 本站查看
    20. 龙伟民,孙华为,刘大双,秦建,张雷,卢洪波. Effect of TiC addition on the microstructure and wear resistance of induction brazed nickel-based coating in air. China Welding. 2022(04): 1-6 .

    Other cited types(0)

Catalog

    Article views (361) PDF downloads (43) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return