Citation: | ZHANG Nan1,2, TIAN Zhiling2, DONG Xianchun1, ZHANG Xi1, YANG Jianwei1. Research on relationship between ΔKth and fatigue life of heat-affected coarse grain zone in Q960E[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 106-110. DOI: 10.12073/j.hjxb.2018390185 |
Joseph C, Benedyk. Light metal in automotive applications[J]. Light Metal Age, 2000, 58(10):34-35.
|
Buch A. Fatigue strength calculation[M]. Switzerland:Trans Tech Publications, 1988.
|
Morrison M L, Buchanan R A, Liaw P K, et al. Four-point-bending-fatiguetreloy 105 bulk metallic glass[J]. Materials Science and Engineering, 2007, A 467:190-197.
|
赵少汴. 抗疲劳设计手册[M]. 北京:机械工业出版社, 2015.
|
ASTM E606/E606M-12. Standard text method for strain-controlled fatigue testing[S]. 2012.
|
Bouyne E, Flower H M, Lindley T C, et al. Use of EBSD technique to examine microstructure and cracking in a bainitic steel[J]. Scripta Materialia, 1998, 39(3):295-300.[DOI: 10.1016/S1359-6462(98)00170-5]
|
温永红, 唐荻, 武会宾, 等. F40级船板低温韧性机理[J]. 北京科技大学学报, 2008, 30(7):724-729. Wen Yonghong, Tang Di, Wu Huibin, et al. Low-temperature toughness characteristics of F40 hull structure steel[J]. Journal of University of Science and Technology Beijing, 30(7):724-729.[DOI: 10.3321/j.issn:1001-053X.2008.07.005]
|
蒋金星, 唐荻, 武会宾, 等. E550海洋平台用钢二次裂纹扩展机理研究[J]. 材料工程, 2013, 6:35-39. Jiang Jinxing, Tang Di, Wu Huibin, et al. Analysis of propagation behavior of secondary cracks in the E550 offshore platform steel[J]. Journal of Materials Engineering, 2013, 6:35-39.[DOI: 10.3969/j.issn.1001-4381.2013.02.007]
|
雷家峰, 刘羽宴, 杨锐, 等. 一种亚稳β钛合金中疲劳短裂纹穿晶扩展晶体学特征的EBSD研究[J]. 金属学报, 2002, 38(S1):272-276. Lei Jiafeng, Liu Yuyan, Yang Rui, et al. EBSD study on the crystallographic characteristics of fatigue crack propagation through a grain boundary in a metastable beta titanium alloy[J]. Acta Metallurgica Sinica, 2002, 38(S1):272-276.
|
[1] | ZHOU Yang, QI Bojin. Controlled stability of variable polarity welding current in VPPAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 16-25. DOI: 10.12073/j.hjxb.20211215003 |
[2] | HAN Yongquan, ZHANG Shiquan, PANG Shigang, HONG Haitao. Arc behavior during variable polarity TIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 51-54,59. |
[3] | CHENG Lin, HU Shengsun, WANG Zhijiang. Arc pressure analysis in variable polarity TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 101-104. |
[4] | HAN Yongquan, DU Maohua, CHEN Shujun, WU Yongjun, SHI Yan. Process control of variable polarity keyhole plasma arc welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 93-96. |
[5] | DING Kun, YAO Heqing, FAN Xinghui, WANG Shouyan. Welding arc load characteristics of variable polarity TIG welding and its control strategy at commutation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 31-34. |
[6] | HAN Yongquan, CHEN Shujun, YIN Shuyan, SONG Cheng. Arc stability and its control of VPPA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 18-20. |
[7] | LI Zhi-ning, DU Dong, WANG Li, LIU Xian-li, BAI Jin-bing. Varived damp phenomena of commutation progress in variable polarity plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 9-12. |
[8] | CHEN Ke-xuan, LI He-qi, LI Chun-xu. Progress in variable polarity plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 124-128. |
[9] | Geng Zheny, Zhang Guangjun, Deng Yuanzhao, Li Liqun, Yin Shuyan. Processing Property of Variable Polarity power in TIG Arc Welding of Aluminium Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (4): 232-237. |
[10] | Geng Zheng, Yin Shuyian, Wang Qilong. Development of variable polarity welding power source for Al alloy TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (3): 179-184. |