Citation: | ZHAO Lei, FENG Guocai, XU Lianyong, HAN Yongdian, JING Hongyang. Creep-fatigue properties and life prediction method of new martensitic heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 1-7. DOI: 10.12073/j.hjxb.20220101003 |
Zhou Y. Optimal scheduling for power system peak load regulation considering short-time startup and shutdown operations of thermal power unit[J]. International Journal of Electrical Power & Energy Systems, 2021, 131(11): 107012.
|
Gopinath K, Gupta R K, Sahu J K, et al. Designing P92 grade martensitic steel header pipes against creep-fatigue interaction loading condition: Damage micromechanisms[J]. Materials & Design, 2015, 86: 411 − 420.
|
Tahir F, Liu Y. A new experimental testing method for investigation of creep-dominant creep-fatigue interaction in alloy 617 at 950 °C[J]. International Journal of Pressure Vessels & Piping, 2017, 154: 75 − 82.
|
Zhang T, Wang X, Ji Y, et al. P92 steel creep-fatigue interaction responses under hybrid stress-strain controlled loading and a life prediction model[J]. International Journal of Fatigue, 2020, 140: 105837. doi: 10.1016/j.ijfatigue.2020.105837
|
葛仁跃. 基于损伤演化机理的P92钢蠕变-疲劳试验研究[D]. 杭州: 浙江工业大学, 2020.
Ge Renyue. Microstructure and high-temperature creep analysis of P92 steel[D]. Hangzhou: Zhejiang University of Technology, 2020.
|
Zhao P, Xuan F. Study on creep-fatigue damage evaluation for advanced 9%-12% chromium steels under stress controlled cycling[J]. Acta Metallurgica Sinica (English Letters), 2011, 24(2): 148 − 154.
|
Riedel H, Maier G, Oesterlin H. A lifetime model for creep-fatigue interaction with applications to the creep resistant steel P92[J]. International Journal of Fatigue, 2021, 150: 106308.
|
郝玉龙. P91钢蠕变特性及蠕变疲劳交互作用研究[D]. 成都: 西南交通大学, 2005.
Hao Yulong. Study on creep characteristics and creep fatigue interaction of P91 steel[D]. Chengdu: Southwest Jiaotong University, 2005.
|
Chen L, Jiang J, Fan Z, et al. A new model for life prediction of fatigue-creep interaction[J]. International Journal of Fatigue, 2007, 29(4): 615 − 619. doi: 10.1016/j.ijfatigue.2006.07.009
|
张力文, 钟玉平, 李世乾, 等. 304H 焊接接头蠕变疲劳寿命预测[J]. 焊接学报, 2019, 40(1): 156 − 160. doi: 10.12073/j.hjxb.2019400031
Zhang Liwen, Zhong Yuping, Li Shiqian, et al. Life prediction of creep-fatigue for 304H with welded joints[J]. Transactions of the China Welding Institution, 2019, 40(1): 156 − 160. doi: 10.12073/j.hjxb.2019400031
|
徐连勇, 庞红宁, 赵雷, 等. G115钢CMT + P焊接工艺及组织和性能[J]. 焊接学报, 2020, 41(8): 1 − 5.
Xu Lianyong, Pang Hongning, Zhao Lei, et al. CMT+P welding process, microstructure and properties of G115 steel[J]. Transactions of the China Welding Institution, 2020, 41(8): 1 − 5.
|
胡苏阳. P92钢微观结构与高温蠕变分析[D]. 北京: 华北电力大学, 2013.
Hu Suyang. Microstructure and high-temperature creep analysis of P92 steel[D]. Beijing: North China Electric Power University, 2013.
|
Fournier B, Sauzay M, Caees C, et al. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue life time[J]. International Journal of Fatigue, 2008, 30(4): 649 − 662. doi: 10.1016/j.ijfatigue.2007.05.007
|
Maruyama K, Sekido N, Yoshimi K. Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel[J]. Materials Science and Engineering A, 2019, 749(3): 223 − 234.
|
赵雷. P92钢焊接接头的蠕变损伤机理研究[D]. 天津: 天津大学, 2009.
Zhao Lei. Research on creep damage mechanism of welded joints of P92 steel[D]. Tianjin: Tianjin University, 2009.
|
1. |
邓浩祥,刘志宏,王幸福,马建国,吴杰峰,韩福生. 基于焊接热模拟的高锰TWIP钢热影响区组织与性能. 焊接学报. 2023(02): 83-89+134 .
![]() | |
2. |
马建国,陶嘉,刘志宏,吴杰峰,刘振飞,邓浩祥,汪志勇. 退火温度对50 mm厚316L电子束焊接头微观组织与力学性能的影响. 焊接学报. 2022(12): 72-78+117 .
![]() |