Advanced Search
ZHAO Lei, FENG Guocai, XU Lianyong, HAN Yongdian, JING Hongyang. Creep-fatigue properties and life prediction method of new martensitic heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 1-7. DOI: 10.12073/j.hjxb.20220101003
Citation: ZHAO Lei, FENG Guocai, XU Lianyong, HAN Yongdian, JING Hongyang. Creep-fatigue properties and life prediction method of new martensitic heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 1-7. DOI: 10.12073/j.hjxb.20220101003

Creep-fatigue properties and life prediction method of new martensitic heat resistant steel

More Information
  • Received Date: December 31, 2021
  • Available Online: May 04, 2022
  • In this paper, the creep-fatigue properties of P92 and G115 new martensitic heat-resistant steels under load control are studied. Influence of dwell time and peak stress on the creep-fatigue properties under load control is analyzed. The results show that the creep-fatigue life decrease with the increase of peak stress and dwell time, and the creep-fatigue life of G115 steel is about 8-10 times that of P92 steel under the same peak stress, but G115 steel is more sensitive to the interaction between peak stress and dwell time. Changes in high temperature strength of materials lead to better creep-fatigue properties of G115 steel than P92 steel. Creep deformation and damage dominate creep-fatigue life during creep-fatigue under load control. For the creep-fatigue life prediction method under load control, the energy method, toughness exhaustion method, frequency separation method and frequency modified tensile hysteresis energy model are studied. Furthermore, based on the mechanism of load controlled creep-fatigue inelastic strain damage, the minimum cyclic creep rate method and the minimum creep rate method based on pure creep are proposed. The results show that the minimum cyclic creep rate model exhibited the highest prediction accuracy, and the method based on the minimum creep rate under pure creep predicts the high-life zone well, but the error in the low-life zone is relatively large.
  • Zhou Y. Optimal scheduling for power system peak load regulation considering short-time startup and shutdown operations of thermal power unit[J]. International Journal of Electrical Power & Energy Systems, 2021, 131(11): 107012.
    Gopinath K, Gupta R K, Sahu J K, et al. Designing P92 grade martensitic steel header pipes against creep-fatigue interaction loading condition: Damage micromechanisms[J]. Materials & Design, 2015, 86: 411 − 420.
    Tahir F, Liu Y. A new experimental testing method for investigation of creep-dominant creep-fatigue interaction in alloy 617 at 950 °C[J]. International Journal of Pressure Vessels & Piping, 2017, 154: 75 − 82.
    Zhang T, Wang X, Ji Y, et al. P92 steel creep-fatigue interaction responses under hybrid stress-strain controlled loading and a life prediction model[J]. International Journal of Fatigue, 2020, 140: 105837. doi: 10.1016/j.ijfatigue.2020.105837
    葛仁跃. 基于损伤演化机理的P92钢蠕变-疲劳试验研究[D]. 杭州: 浙江工业大学, 2020.

    Ge Renyue. Microstructure and high-temperature creep analysis of P92 steel[D]. Hangzhou: Zhejiang University of Technology, 2020.
    Zhao P, Xuan F. Study on creep-fatigue damage evaluation for advanced 9%-12% chromium steels under stress controlled cycling[J]. Acta Metallurgica Sinica (English Letters), 2011, 24(2): 148 − 154.
    Riedel H, Maier G, Oesterlin H. A lifetime model for creep-fatigue interaction with applications to the creep resistant steel P92[J]. International Journal of Fatigue, 2021, 150: 106308.
    郝玉龙. P91钢蠕变特性及蠕变疲劳交互作用研究[D]. 成都: 西南交通大学, 2005.

    Hao Yulong. Study on creep characteristics and creep fatigue interaction of P91 steel[D]. Chengdu: Southwest Jiaotong University, 2005.
    Chen L, Jiang J, Fan Z, et al. A new model for life prediction of fatigue-creep interaction[J]. International Journal of Fatigue, 2007, 29(4): 615 − 619. doi: 10.1016/j.ijfatigue.2006.07.009
    张力文, 钟玉平, 李世乾, 等. 304H 焊接接头蠕变疲劳寿命预测[J]. 焊接学报, 2019, 40(1): 156 − 160. doi: 10.12073/j.hjxb.2019400031

    Zhang Liwen, Zhong Yuping, Li Shiqian, et al. Life prediction of creep-fatigue for 304H with welded joints[J]. Transactions of the China Welding Institution, 2019, 40(1): 156 − 160. doi: 10.12073/j.hjxb.2019400031
    徐连勇, 庞红宁, 赵雷, 等. G115钢CMT + P焊接工艺及组织和性能[J]. 焊接学报, 2020, 41(8): 1 − 5.

    Xu Lianyong, Pang Hongning, Zhao Lei, et al. CMT+P welding process, microstructure and properties of G115 steel[J]. Transactions of the China Welding Institution, 2020, 41(8): 1 − 5.
    胡苏阳. P92钢微观结构与高温蠕变分析[D]. 北京: 华北电力大学, 2013.

    Hu Suyang. Microstructure and high-temperature creep analysis of P92 steel[D]. Beijing: North China Electric Power University, 2013.
    Fournier B, Sauzay M, Caees C, et al. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue life time[J]. International Journal of Fatigue, 2008, 30(4): 649 − 662. doi: 10.1016/j.ijfatigue.2007.05.007
    Maruyama K, Sekido N, Yoshimi K. Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel[J]. Materials Science and Engineering A, 2019, 749(3): 223 − 234.
    赵雷. P92钢焊接接头的蠕变损伤机理研究[D]. 天津: 天津大学, 2009.

    Zhao Lei. Research on creep damage mechanism of welded joints of P92 steel[D]. Tianjin: Tianjin University, 2009.
  • Cited by

    Periodical cited type(2)

    1. 邓浩祥,刘志宏,王幸福,马建国,吴杰峰,韩福生. 基于焊接热模拟的高锰TWIP钢热影响区组织与性能. 焊接学报. 2023(02): 83-89+134 . 本站查看
    2. 马建国,陶嘉,刘志宏,吴杰峰,刘振飞,邓浩祥,汪志勇. 退火温度对50 mm厚316L电子束焊接头微观组织与力学性能的影响. 焊接学报. 2022(12): 72-78+117 . 本站查看

    Other cited types(1)

Catalog

    Article views (643) PDF downloads (153) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return