Citation: | MA Jingping, CAO Rui, ZHOU Xin. Development on improving fatigue life of high strength steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 115-128. DOI: 10.12073/j.hjxb.20230711001 |
With the increasing application of high-strength steel in people's pursuit of equipment performance and environmental protectio, welding, as an important material joining method, is essential in the application of high-strength steel. However, the fatigue performance of welded joints does not improve with the increase of steel strength level. So how to improve the fatigue life of the welded joints is of great significance to the application of high-strength steel. Based on the relevant research results at home and abroad in recent years, this paper summarizes the factors affecting the fatigue performance of high-strength steel welded joints, including stress concentration, welding residual stress, welding method and welding material. A variety of methods to improve the fatigue life of high strength steel welded joints are reviewed, and they are classified according to the mechanism of improving the fatigue performance of joints. The first type of life improvement method is mainly based on the improvement of the geometric morphology of the joint, and the life is improved by reducing the stress concentration factor to slow down the initiation of fatigue cracks, such as TIG dressing, laser dressing, spray deposition, profiling and grinding methods. Some of these methods improve the weld morphology and lead-in residual compressive stress that is beneficial to fatigue life. The second type of life improvement method is mainly based on the adjustment of the residual stress of the joint. The crack growth rate is slowed down by reducing the residual tensile stress or introducing the residual compressive stress, such as post-weld heat treatment (PWHT), high frequency mechanical shock (HFMI), laser shock processing (LSP), rolling and friction stir. Some of which also improve the surface hardness and grain size of the joint to affect the fatigue crack initiation. Suggestions and prospects for the use of these methods are put forward.
[1] |
帅朋, 高珊, 吴志生, 等. 高强钢焊接研究现状[J]. 焊接技术, 2016, 45(6): 1 − 4.
Shuai Peng, Gao Shan, Wu Zhisheng, et al. Research status of high strength steel welding[J]. Welding Technology, 2016, 45(6): 1 − 4.
|
[2] |
张伟. 第三代高强钢激光点焊接头成形机理及断裂行为研究[D]. 合肥: 中国科学院大学, 2021.
Zhang Wei. Formation mechanism and fracture behavior of laser spot welded third generation high-strength steel [ D ]. Hefei: University of Chinese Academy of Sciences , 2021.
|
[3] |
胡银辉. DP1000高强钢点焊工艺及接头组织与性能[D]. 长春: 吉林大学, 2013.
Hu Yinhui. Resistance spot welding process and the microstructures and properties of DP1000 high strength steel joints [D]. Changchun: Jilin University, 2013.
|
[4] |
Ohnishi, Kawahito, Mizutani, et al. Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content[J]. Science and Technology of Welding and Joining, 2013, 18(4): 314 − 322. doi: 10.1179/1362171813Y.0000000108
|
[5] |
Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects[J]. Physics Procedia, 2010, 5(2): 9 − 17.
|
[6] |
Otegui J L, Kerr H W, Burns D J, et al. Fatigue crack initiation from defects at weld toes in steel[J]. International Journal of Pressure Vessels and Piping, 1989, 38(5): 385 − 417. doi: 10.1016/0308-0161(89)90048-3
|
[7] |
李进. 大港电厂1号汽轮机喷嘴室断裂事故金属分析[J]. 华北电力技术, 1991(8): 7 − 12.
Li Jin. Metal analysis of No. 1 steam turbine nozzle chamber fracture accident in dagang power plant[J]. North China Electric Power Technology, 1991(8): 7 − 12.
|
[8] |
叶华文, 黄若森, 周渝, 等. 澳大利亚焊接工字钢梁桥疲劳断裂事故分析[J]. 建筑结构, 2022, 52,(S1): 1251 − 1255.
Ye Huawen, Huang Ruosen, Zhou Yu, et al. Fatigue fracture failure analysis of a welded I-beam steel bridge in Australia[J]. Building Structure, 2022, 52,(S1): 1251 − 1255.
|
[9] |
Chapetti M D, Otegui J L. Controlled toe waviness as a means to increase fatigue resistance of automatic welds in transverse loading[J]. International Journal of Fatigue, 1997, 19(10): 667 − 675. doi: 10.1016/S0142-1123(97)00061-3
|
[10] |
Ahiale K G, Oh Y, Choi W, et al. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes[J]. Metals and Materials International, 2013, 19(5): 933 − 939. doi: 10.1007/s12540-013-5005-3
|
[11] |
Tsuyoshi S, Naoki Y, Yoshikiyo T, et al. Effect of weld toe geometry on fatigue life of lap fillet welded ultra-high strength steel joints[J]. International Journal of Fatigue, 2018, 116: 409 − 420. doi: 10.1016/j.ijfatigue.2018.06.050
|
[12] |
张晨星. 焊缝形貌对焊接强度的影响研究[D]. 秦皇岛: 燕山大学, 2022.
Zhang Chenxing. Study on the influence of weld morphology on welding strength[D]. Qinhuangdao: Yanshan University, 2022.
|
[13] |
王晓南, 郑知, 曾盼林, 等. 800 MPa级高强钢光纤激光焊接接头微观结构对硬度及疲劳性能的影响[J]. 中国激光, 2016, 43(12): 115 − 124.
Wang Xiaonan, Zheng Zhi, Zeng Panlin, et al. Effects of microstructure on hardness and fatigue properties of 800 MPa high strength steel fiber laser welded joints[J]. Chinese Journal of Lasers, 2016, 43(12): 115 − 124.
|
[14] |
Wang W K, Liu Y, Guo Y, et al. High cycle fatigue and fracture behaviors of CrMoV/NiCrMoV dissimilar rotor welded joint at 280 ℃[J]. Materials Science & Engineering A, 2020: 139473.
|
[15] |
镇顺利. 焊接T形接头疲劳寿命及残余应力释放研究[D]. 石家庄铁道大学, 2022.
Zheng Shunli. Research on fatigue life and residual stress release of welded T-joints[D]. Shijiazhuang Tiedao University, 2022.
|
[16] |
苗玉刚, 刘吉, 李小旭, 等. BC-MIG丝材电弧增材制造NAB/钢复合结构的微观组织与力学性能[J]. 焊接学报, 2023, 44(7): 56 − 62.
Miao Yugang, Liu Ji, Li Xiaoxu. Microstructure and mechanical properties of NAB/steel composite structures by additive manufacturing with BC-MIG wire arc[J]. Transactions of the China Welding Institution, 2023, 44(7): 56 − 62.
|
[17] |
苟川东. X80管道焊接残余应力及结构疲劳寿命数值分析[D]. 西安理工大学, 2022.
Gou Chuandong. Numerical analysis of welding residual stress and structural fatigue life of X80 pipeline[D]. Xi 'an University of Technology, 2022.
|
[18] |
Anna E, Javad R, Sandra C, et al. The effect of surface treatment and orientation on fatigue crack growth rate and residual stress distribution of wire arc additively manufactured low carbon steel components[J]. Journal of Materials Research and Technology, 2023, 24: 2988 − 3004. doi: 10.1016/j.jmrt.2023.03.227
|
[19] |
熊祥. 残余应力场对超高强钢焊接接头疲劳裂纹扩展行为的影响[D]. 哈尔滨工业大学, 2014.
Xiong Xiang. Effect of residual stress field on fatigue crack propagation behavior at welded joints of ultra-high strength steel[D]. Harbin Institute of Technology, 2014.
|
[20] |
Leitner M , Mossler W, Putz A, et al. Effect of post-weld heat treatment on the fatigue strength of HFMI-treated mild steel joints[J]. Welding in the World, 2015, 59(6): 861 − 873.
|
[21] |
宋威, 满铮, 徐杰, 等. 含错位效应十字焊接接头疲劳可靠性评估[J]. 焊接学报, 2023, 44(6): 20 − 26 + 34. doi: 10.12073/j.hjxb.20220629001
Song Wei, Man Zheng, Xu Jie, et al. Fatigue reliability analysis of load-carrying cruciform joints with misalignment effects[J]. Transactions of the China Welding Institution, 2023, 44(6): 20 − 26 + 34. doi: 10.12073/j.hjxb.20220629001
|
[22] |
Ceferino S, Nenad G, Tomaz V, et al. Effect of welding processes on the fatigue behaviour of ultra-high strength steel butt-welded joints[J]. Engineering Fracture Mechanics, 2022, 275: 108845. doi: 10.1016/j.engfracmech.2022.108845
|
[23] |
Tumer M, Schneider-Broskamp C, Enzinger N. Fusion welding of ultra-high strength structural steels-a review[J]. Journal of Manufacturing Processes, 2022, 82: 203 − 229. doi: 10.1016/j.jmapro.2022.07.049
|
[24] |
Dzioba I, Pala T. Influence of LWE on strength of welded joints of HSS S960-experimental and numerical analysis[J]. Materials, 2020, 13(3): 747 − 747. doi: 10.3390/ma13030747
|
[25] |
Hariprasath P, Sivaraj P, Balasubramanian V, et al. Effect of welding processes on high cycle fatigue behavior for naval grade HSLA joints: a fatigue strength prediction[J]. Engineering Failure Analysis, 2022, 142: 106783. doi: 10.1016/j.engfailanal.2022.106783
|
[26] |
Ravi S, Balasubramanian V, Babu S, et al. Assessment of some factors influencing the fatigue life of strength mis-matched HSLA steel weldments[J]. Materials & Design, 2004, 25(2): 125 − 135.
|
[27] |
Liu Y, Tsang K S, Subramaniam N A, et al. Structural fatigue investigation of thermite welded rail joints considering weld-induced residual stress and stress relaxation by cyclic load[J]. Engineering Structures, 2021, 235: 112033. doi: 10.1016/j.engstruct.2021.112033
|
[28] |
Ngoula T D, Beier H, Vormwald M. Fatigue crack growth in cruciform welded joints: influence of residual stresses and of the weld toe geometry[J]. International Journal of Fatigue, 2017, 101: 253 − 262.
|
[29] |
赵智力, 杨建国, 刘雪松等. 10CrNi3MoV钢低匹配对接接头的拉伸疲劳性能[J]. 焊接学报, 2010, 31(3): 89 − 92.
Zhao Zhili, Yang Jianguo, Liu Xuesong, et al. Mechanical and fatigue properties of undermatching butt joints of 10CrNi3MoV steel[J]. Transactions of the China Welding Institution, 2010, 31(3): 89 − 92 .
|
[30] |
Adam D, Marcell G, Janos L. The influence of mismatch effect on the high cycle fatigue resistance of high strength steel welded joints[J]. Advanced Materials Research, 2018, 1146: 73 − 83.
|
[31] |
Ravi S, Balasubramanian V, Nasser N S. Effect of mis-match ratio (MMR) on fatigue crack growth behaviour of HSLA steel welds[J]. Engineering Failure Analysis, 2003, 11(3): 413 − 428.
|
[32] |
Ravi S, Balasubramanian V, Nasser N S. Influences of Post Weld heat treatment on fatigue life prediction of gtrength mis-matched HSLA steel welds[J]. International Journal of Fatigue, 2005(27): 547 − 553
|
[33] |
Ravi S, Balasubramanian V, Nasser S N. Fatigue life prediction of strength mis-matched high strength low alloy steel welds[J]. Materials & Design, 2006, 27(4): 278 − 286.
|
[34] |
Shiga C, Murakawa H, Hiraoka K, et al. Elongated bead weld method for improvement of fatigue properties in welded joints of ship hull structures using low transformation temperature welding materials[J]. Welding in the World, 2017, 61(4): 769 − 788. doi: 10.1007/s40194-017-0439-8
|
[35] |
Smith C, Pistorius P G. The effect of a long post weld heat treatment on the integrity of a welded joint in a pressure vessel steel[J]. International Journal of Pressure Vessels and Piping, 1997, 70(3): 183 − 195. doi: 10.1016/S0308-0161(96)00029-4
|
[36] |
Feng X Y, Zheng K F, Heng J L, et al. Fatigue performance of rib-to-deck joints in orthotropic steel deck with PWHT[J]. Journal of Constructional Steel Research, 2022, 196: 107420. doi: 10.1016/j.jcsr.2022.107420
|
[37] |
Selvamani S, Vigneshwar M, Nikhil M, et al. Enhancing the fatigue properties of friction welded AISI 1020 grade steel joints using post weld heat treatment process in optimized condition[J]. Materials Today, 2019, 16(P2): 1251 − 1258.
|
[38] |
Yildirim C H, Marquis B G. Overview of fatigue data for high frequency mechanical impact treated welded joints[J]. Welding in the World, 2012, 56(7-8): 82 − 96. doi: 10.1007/BF03321368
|
[39] |
朱鹏飞, 严宏志, 陈志, 等. 齿轮齿面喷丸强化研究现状与展望[J]. 表面技术, 2020, 49(4): 113 − 131.
Zhu Pengfei, Yan Hongzhi, Chen Zhi, et al. Research status and prospect of shot peening of gear tooth flanks[J]. Surface Technology, 2020, 49(4): 113 − 131
|
[40] |
Malaki M, Ding H. A review of ultrasonic peening treatment[J]. Materials & Design, 2015, 87: 1072 − 1086.
|
[41] |
Zhan K, Jiang C H, Ji V. Effect of prestress state on surface layer characteristic of S30432 austenitic stainless steel in shot peening process[J]. Materials & Design, 2012, 42: 89 − 93.
|
[42] |
Scuracchio G B, Lima D B, Schon G C. Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs[J]. Materials & Design, 2013, 47: 672 − 676.
|
[43] |
王成. 喷丸强化过程的数值模拟与疲劳裂纹扩展行为研究[D]. 浙江工业大学, 2016.
Wang Cheng. Study of shot peening simulation and fatigue crack growth behavior[D]. Zhejiang University of Technology, 2016.
|
[44] |
李丰博, 肖桂枝. 喷丸对X70管线钢焊接接头组织与性能的影响[J]. 金属热处理, 2017, 42(9): 178 − 182.
Li Fengbo, Xiao Guizhi. Effect of shot peening on microstructure and properties of pipeline steel welded joint[J]. Heat Treatment of Metals, 2017, 42(9): 178 − 182.
|
[45] |
门延会, 王强, 严瑞强, 等. 喷丸对小型船舶钢板焊接接头的腐蚀和疲劳影响[J]. 船舶工程, 2021, 43(9): 101 − 104 + 110.
Men Yanhui, Wang Qiang, Yan Ruiqiang, et al. Effects of shot blasting on corrosion and fatigue properties of welded joint of ship steel sheets[J]. Ship Engineering, 2021, 43(9): 101 − 104 + 110.
|
[46] |
Fueki R, Takahashi K. Improving the fatigue limit and rendering a defect harmless by laser peening for a high strength steel welded joint[J]. Optics & Laser Technology, 2021, 134: 106605.
|
[47] |
Yamaguchi N, Shiozaki T, Tamai Y. Micro-needle peening method to improve fatigue strength of arc-welded ultra-high strength steel joints[J]. Journal of Materials Processing Technology, 2021, 288: 116894. doi: 10.1016/j.jmatprotec.2020.116894
|
[48] |
李东东, 郑云, 初明进, 等. 超声冲击强化技术处理焊接结构的研究进展[J]. 材料保护, 2019, 52(11): 139 − 145 + 150.
Li Dongdong, Zheng Yun, Chu Mingjin, et al. Research progress of ultrasonic impact strengthening technology for welded structures[J]. Material protection, 2019, 52(11): 139 − 145 + 150.
|
[49] |
Abdullah A, Malaki M, Eskandari A. Strength enhancement of the welded structures by ultrasonic peening[J]. Materials & Design, 2012, 38: 7 − 18.
|
[50] |
朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报, 2014, 50(20): 35 − 45. doi: 10.3901/JME.2014.20.035
Zhu Youli, Wang Yanli, Bian Feilong, et al. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. Journal of Mechanical Engineering, 2014, 50(20): 35 − 45. doi: 10.3901/JME.2014.20.035
|
[51] |
白易立, 王东坡, 邓彩艳, 等. 超声冲击强度对焊接接头疲劳寿命的影响[J]. 焊接学报, 2019, 40(12): 149 − 153.
Bai Yili, Wang Dongpo, Deng Caiyan, et al. Effect of ultrasonic impact strength on fatigue life of welded joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 149 − 153.
|
[52] |
Huang S, Qi Z J, Zhang A F, et al. Reducing the anisotropy of the mechanical properties of directed energy deposited Ti6Al4V alloy with inter-layer ultrasonic impact peening and heat treatment[J]. Materials Science & Engineering A, 2022, 857: 144123.
|
[53] |
邓海鹏, 于影霞. 超声冲击对焊接接头表面质量的影响[J]. 表面技术, 2017, 46(2): 208 − 213.
Deng Haipeng, Yu Yingxia. Effect of ultrasonic impact on the surface quality of welded joint[J]. Surface Technology, 2017, 46(2): 208 − 213.
|
[54] |
Haagensen P J, Statnikov E S, Lopezmartinez L. Introductory fatigue tests on welded joints in high strength steel and aluminum improved by various methods including ultrasonic impact treatment (UIT)[R]. Oslo, Norway: International Institute of Welding, 2008.
|
[55] |
叶雄林, 朱有利. 超声冲击细化22SiMn2TiB超高强钢焊接接头晶粒研究[J]. 热加工工艺, 2006(6): 12 − 14. doi: 10.3969/j.issn.1001-3814.2006.06.006
Ye Xionglin, ZhuYouli. Investigation on fining grain of ultrahigh strength steel welding joint by ultrasonic impact treatment[J]. Hot Working Technology, 2006(6): 12 − 14. doi: 10.3969/j.issn.1001-3814.2006.06.006
|
[56] |
Lago J, Trsko L, Jambor M, et al. Fatigue life improvement of the high strength steel welded joints by ultrasonic impact peening[J]. Metals, 2019, 9(6): 618. doi: 10.3390/met9060618
|
[57] |
刘博洋. 超声冲击处理对30CrMnSi钢焊接接头腐蚀和疲劳性能的影响[D]. 吉林大学, 2022.
Liu Boyang. Effect of ultrasonic impact treatment on corrosion and fatigue properties of 30CrMnSi steel welded joint[D]. Changchun: Jilin University, 2022.
|
[58] |
Zhang H, Wang D P, Xia L Q, et al. Effects of ultrasonic impact treatment on pre-fatigue loaded high-strength steel welded joints[J]. International Journal of Fatigue, 2015, 80: 278 − 287. doi: 10.1016/j.ijfatigue.2015.06.017
|
[59] |
Hassan A , Franz U, Mohammad A. Fatigue life extension of existing welded structures via high frequency mechanical impact (HFMI) treatment[J]. Engineering Structures, 2021, 239: 112234.
|
[60] |
Yildirim C H, Marquis B G. Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact[J]. International Journal of Fatigue, 2012, 44: 168 − 176. doi: 10.1016/j.ijfatigue.2012.05.002
|
[61] |
Leitner M, Khurshid M, Barsoum Z. Stability of high frequency mechanical impact (HFMI) post-treatment induced residual stress states under cyclic loading of welded steel joints[J]. Engineering Structures, 2017, 143: 589 − 602. doi: 10.1016/j.engstruct.2017.04.046
|
[62] |
Shams-Hakimi P, Zamiri F, Al-Emrani M, et al. Experimental study of transverse attachment joints with 40 and 60 mm thick main plates, improved by high-frequency mechanical impact treatment (HFMI)[J]. Engineering Structures, 2018, 155: 251 − 266. doi: 10.1016/j.engstruct.2017.11.035
|
[63] |
何兆儒, 沈一洲, 周晋, 等. 激光冲击强化的微观组织演变与性能研究进展[J]. 航空制造技术, 2021, 64(19): 48 − 58.
He Zhaoru, Shen Yizhou, Zhou Jin, et al. Microstructure evolution and performant enhancement of laser shock peening[J]. Aeronautical Manufacturing Technology, 2021, 64(19): 48 − 58.
|
[64] |
Charles S, Wei T, YeL, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021 − 1036. doi: 10.1016/S0142-1123(02)00022-1
|
[65] |
舒坤, 乔红超, 赵吉宾, 等. 激光冲击强化对焊缝组织性能影响的研究进展[J]. 表面技术, 2023, 52(7): 41 − 54.
Shu Kun, Qiao Hongchao, Zhao Jibin, et al. Research progress on the effect of laser shock processing on the properties of weld[J]. Surface Technology, 2023, 52(7): 41 − 54.
|
[66] |
Yuji S, Tomoharu K, Yoshio M, et al. Development of a portable laser peening device and its effect on the fatigue properties of HT780 butt-welded joints[J]. Forces in Mechanics, 2022, 7: 100080. doi: 10.1016/j.finmec.2022.100080
|
[67] |
符素宁, 武德安, 赵静, 等. 激光冲击强化对异种不锈钢焊接接头振动疲劳性能影响的分析[J]. 热加工工艺, 2023, 52(9): 56 − 60.
Fu Suning, Wu Dean, Zhao Jing, et al. Analysis of the effect of laser shock peening on the vibration fatigue properties of dissimilar stainless steel welded joints[J]. Hot Working Technology, 2023, 52(9): 56 − 60.
|
[68] |
Ma R, Huang D, Zhang J, et al. Effects of rail flash-butt welding and post-weld heat treatment processes meeting different national standards on residual stresses of welded joints[J]. International Journal of Materials Research, 2020, 111(9): 780 − 787. doi: 10.3139/146.111935
|
[69] |
Dhakal B, Swaroop S. Review: laser shock peening as post welding treatment technique[J]. Journal of Manufacturing Processes, 2018, 32: 721 − 733. doi: 10.1016/j.jmapro.2018.04.006
|
[70] |
Zhang X S, Ma Y, Yang M, et al. A comprehensive review of fatigue behavior of laser shock peened metallic materials[J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103642. doi: 10.1016/j.tafmec.2022.103642
|
[71] |
Leitner M, Simunek D, Shah F S, et al. Numerical fatigue assessment of welded and HFMI-treated joints by notch stress/strain and fracture mechanical approaches[J]. Advances in Engineering Software, 2018, 120: 96 − 106. doi: 10.1016/j.advengsoft.2016.01.022
|
[72] |
Schubnell J, Pontner P, Wimpory R, et al. The influence of work hardening and residual stresses on the fatigue behavior of high frequency mechanical impact treated surface layers[J]. International Journal of Fatigue, 2020, 134: 105450. doi: 10.1016/j.ijfatigue.2019.105450
|
[73] |
Baumgartner J, Yildirim C H, Barsoum Z. Fatigue strength assessment of TIG-dressed welded steel joints by local approaches[J]. International Journal of Fatigue, 2019, 126: 72 − 78. doi: 10.1016/j.ijfatigue.2019.04.038
|
[74] |
Al-Karawi H, Polach U B, Al-Emrani M. Fatigue crack repair in welded structures via tungsten inert gas remelting and high frequency mechanical impact[J]. Journal of Constructional Steel Research, 2020, 172: 106200. doi: 10.1016/j.jcsr.2020.106200
|
[75] |
Moritz B, Jonas H, Shi S , et al. Fatigue strength of normal and high strength steel joints improved by weld profiling[J]. Engineering Structures, 2021, 246: 113030.
|
[76] |
Moritz B, Wang X R. A review of fatigue test data on weld toe grinding and weld profiling[J]. International Journal of Fatigue, 2021, 145: 106073.
|
[77] |
Mettanen H, Nykanen T, Skriko T, et al. Fatigue strength assessment of TIG-dressed ultra-high-strength steel fillet weld joints using the 4R method[J]. International Journal of Fatigue, 2020, 139: 105745. doi: 10.1016/j.ijfatigue.2020.105745
|
[78] |
Tuomas S, Antti A, Ilkka P, et al. Fatigue strength of laser-dressed non-load-carrying fillet weld joints made of ultra-high-strength steel[J]. Procedia Structural Integrity, 2022, 38: 393 − 400. doi: 10.1016/j.prostr.2022.03.040
|
[79] |
Tobias J, Torbjorn N, Zuheir B. Fatigue and ultimate strength assessment of post weld treated strenx® 1100 plus butt welds[J]. Procedia Structural Integrity, 2022, 38: 414 − 417.
|
[80] |
王佳杰, 杨建国, 张敬强, 等. 随焊冲击碾压整形新方法及等承载接头拉伸与疲劳性能[J]. 焊接学报, 2012, 33(11): 35 − 38.
Wang Jiajie, Yang Jianguo, Zhang Jingqiang, et al. A new weld shaping method with trailing impact rolling and of tensile and fatigue properties of equal load-carry capacity joints[J]. Transactions of the China Welding Institution, 2012, 33(11): 35 − 38.
|
[81] |
Maximilian K H, Steffen H, Christian D, et al. Automated geometry measurement and deep rolling of butt welds[J]. Welding in the World, 2022, 66(12): 2533 − 2547. doi: 10.1007/s40194-022-01346-w
|
[82] |
Jan S, Martin D, Michael L. Strength improvement of laser beam welded joints in cold worked high-manganese-steel by means of deep rolling[J]. Procedia CIRP, 2022, 111: 457 − 461. doi: 10.1016/j.procir.2022.08.065
|
[83] |
Danekas C, Heikebrugge S, Schubnell J, et al. Influence of deep rolling on surface layer condition and fatigue life of steel welded joints[J]. International Journal of Fatigue, 2022, 162: 106694.
|
[84] |
Sekban D, Aktarer S, Xue P, et al. Impact toughness of friction stir processed low carbon steel used in shipbuilding[J]. Materials Science & Engineering A, 2016, 672: 40 − 48.
|
[85] |
Xue P, Wang B B, Chen F F, et al. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization, 2016, 121: 187 − 194.
|
[86] |
Yamamoto H, Danno Y, Ito K, et al. Weld toe modification using spherical-tip WC tool FSP in fatigue strength improvement of high-strength low-alloy steel joints[J]. Materials & Design, 2018, 160: 1019 − 1028.
|
[87] |
Yamamoto H, Koga S, Ito K, et al. Fatigue strength improvement due to alloying steel weld toes with WC tool constituent elements through friction stir processing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9): 6203 − 6213.
|
[88] |
Assadi H, Kreye H, Gärtner F , et al. Cold spraying−a materials perspective[J]. Acta Materialia, 2016, 116: 382 − 407.
|
[89] |
Naoki Y , Tsuyoshi S , Yoshikiyo T , et al. Effect of cold spray deposition on fatigue strength of arc-welded ultra-high strength steel sheet[J]. International Journal of Fatigue, 2022, 161: 106876.
|
[90] |
Bagherifard S, Guagliano M. Fatigue performance of cold spray deposits: coating, repair and additive manufacturing cases[J]. International Journal of Fatigue, 2020, 139: 105744. doi: 10.1016/j.ijfatigue.2020.105744
|
[91] |
Xiong Y M, Zhang M X. The effect of cold sprayed coatings on the mechanical properties of AZ91D magnesium alloys[J]. Surface & Coatings Technology, 2014, 253: 89 − 95.
|
[92] |
Cavaliere P, Perrone A, Silvello A. Fatigue behaviour of Inconel 625 cold spray coatings[J]. Surface Engineering, 2018, 34(5): 380 − 391. doi: 10.1080/02670844.2017.1371872
|
[1] | XU Lianyong, LONG Zhiping, ZHAO Lei, HAN Yongdian, PENG Chentao. Effect of stress concentration at weld toes on combined high and low cycle fatigue of EH36 steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 1-9. DOI: 10.12073/j.hjxb.20230619003 |
[2] | LIU Xue, ZHONG Shifang, XU Lianyong, ZHAO Lei, HAN Yongdian. Corrosion fatigue behavior of X65 pipeline steel welded joints under different stress ranges[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 24-31, 78. DOI: 10.12073/j.hjxb.20220830001 |
[3] | HE Bolin, YE Bin, DENG Haipeng, LI Li, WEI Kang. Very high cycle fatigue properties of SMA490BW steel welded joints for train bogie[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 31-37. DOI: 10.12073/j.hjxb.2019400037 |
[4] | DING Sansan, LI Qiang, GOU Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7N01 aluminum alloy for high-speed trcion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 23-28. |
[5] | XUE Bin, ZHANG Tianhui, XU Renping, WANG Shiyue. Effect of residual compressive stress field on fatigue crack growth of B780CF steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 103-108. |
[6] | YIN Chengjiang, SONG Tianmin, LI Wanli. Effect of high-temperature welding on fatigue life of 2.25Cr1Mo steel joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 106-108. |
[7] | ZHAO Dongsheng, WU Guoqiang, LIU Yujun, LIU Wen, JI Zhuoshang. Effect of welding residual stress on fatigue life of Invar steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 93-95,108. |
[8] | XU Jun, ZHANG Yansong, ZHU Ping, CHEN Guanlong. Fatigue life analysis of lap-shear spot weld of dual phase steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 45-48. |
[9] | WANG Wen-xian, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. Effect of Transformation Temperature on Improving the Fatigue Strength of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 15-18. |
[10] | Ling Chao, Zheng Xiulin. Overloading effect upon fatigue life of 16Mn steel butt welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 247-251. |
1. |
蹇文轩,丛孟启,雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展. 机械工程学报. 2024(08): 48-64 .
![]() | |
2. |
刘傲翔,王江涛,李星辰,何明涛,胡可军,谢利,刘超,王明智. 铝基复合材料搅拌摩擦加工制备工艺及其耐磨性能研究进展. 材料研究与应用. 2024(05): 710-720 .
![]() | |
3. |
郭顺,王朋坤,顾介仁,彭勇,徐俊强,周琦. 电弧熔炼Ti6Al4V/B_4C复合材料微观组织与力学性能. 机械制造文摘(焊接分册). 2023(06): 19-26 .
![]() | |
4. |
郭顺,王朋坤,顾介仁,彭勇,徐俊强,周琦. 电弧熔炼Ti6Al4V/B_4C复合材料微观组织与力学性能. 焊接学报. 2022(09): 62-68+117 .
![]() |