Citation: | FENG Chao, ZHAO Lei, XU Lianyong, HAN Yongdian. Investigation on fatigue life prediction approach of welded joints via integrated data-driven method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 8-13, 51. DOI: 10.12073/j.hjxb.20221116002 |
In this study, a novel intelligent fatigue life prediction approach was established via the integrated data-driven method (Borderline-Synthetic Minority Over-Sampling Technique, eXtreme Gradient Boosting, Deep Convolutional Neural Network). Among them, the Borderline-Synthetic Minority Over-Sampling Technique was used to enhance the data quality of the fatigue performance dataset, the eXtreme Gradient Boosting was used to realize the weight analysis of the influencing factors of fatigue life, and the Deep Convolutional Neural Network was used as the model framework to understand the multiple nonlinear relationships between fatigue life and its influencing factors. Based on the analysis of different technology combinations, it was found that weight analysis and data augmentation were both beneficial for improving prediction accuracy, with the former having better results than the latter. And by comparing with other novel prediction models, the accuracy and stability of the proposed method were verified.
[1] |
徐连勇. 长寿命高可靠性焊接结构[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(1): 1 − 10.
Xu Lianyong. Long life and high reliability welded structure[J]. Journal of Tianjin University (Science and Technology), 2022, 55(1): 1 − 10.
|
[2] |
轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26 − 51. doi: 10.3901/JME.2021.06.026
Xuan Fuzhen, Zhu Mingliang, Wang Guobiao. Review and prospect of 100 year research on structural fatigue[J]. Chinese Journal of Mechanical Engineering, 2021, 57(6): 26 − 51. doi: 10.3901/JME.2021.06.026
|
[3] |
Su M, Xu L, Peng C, et al. Fatigue short crack growth, model and EBSD characterization of marine steel welding joint[J]. International Journal of Fatigue, 2022, 156: 106689. doi: 10.1016/j.ijfatigue.2021.106689
|
[4] |
闫志峰, 王卓然, 王树邦, 等. AZ31镁合金双面对称搅拌摩擦焊接头疲劳性能[J]. 焊接学报, 2022, 43(6): 61 − 68. doi: 10.12073/j.hjxb.20211119001
Yan Zhifeng, Wang Zhuoran, Wang Shubang, et al. Fatigue performance of AZ31 magnesium alloy double-sided symmetric friction stir welded joint[J]. Transactions of the China Welding Institution, 2022, 43(6): 61 − 68. doi: 10.12073/j.hjxb.20211119001
|
[5] |
Fricke W. Fatigue analysis of welded joints: state of development[J]. Marine Structures, 2003, 16(3): 185 − 200. doi: 10.1016/S0951-8339(02)00075-8
|
[6] |
Xu B, Xiong J, Yu C, et al. Improved elastocaloric effect of NiTi shape memory alloys via microstructure engineering: A phase field simulation[J]. International Journal of Mechanical Sciences, 2022, 222: 107256. doi: 10.1016/j.ijmecsci.2022.107256
|
[7] |
范强, 徐辉, 柴俊凯. 海洋平台疲劳寿命预测的优化分析[J]. 石油工程建设, 2022, 48(3): 8 − 13. doi: 10.3969/j.issn.1001-2206.2022.03.002
Fan Qiang, Xu Hui, Chai Junkai. Optimization analysis of fatigue life prediction of offshore platforms[J]. Petroleum Engineering Construction, 2022, 48(3): 8 − 13. doi: 10.3969/j.issn.1001-2206.2022.03.002
|
[8] |
蒋广龙, 高月华, 刘其鹏. 考虑极限应力相对量度的Manson-Coffin改进模型[J]. 大连交通大学学报, 2022, 43(3): 41 − 45.
Jiang Guanglong, Gao Yuehua, Liu Qipeng. Improved Manson Coffin model considering relative measurement of ultimate stress[J]. Journal of Dalian Jiaotong University, 2022, 43(3): 41 − 45.
|
[9] |
Kang G, Luo H. Review on fatigue life prediction models of welded joint[J]. Acta Mechanica Sinica, 2020, 36(3): 701 − 726. doi: 10.1007/s10409-020-00957-0
|
[10] |
Spear A D, Kalidindi S R, Meredig B, et al. Data-driven materials investigations: the next frontier in understanding and predicting fatigue behavior[J]. JOM, 2018, 70(7): 1143 − 1146. doi: 10.1007/s11837-018-2894-0
|
[11] |
Heng J, Zheng K, Feng X, et al. Machine Learning-Assisted probabilistic fatigue evaluation of Rib-to-Deck joints in orthotropic steel decks[J]. Engineering Structures, 2022, 265: 114496. doi: 10.1016/j.engstruct.2022.114496
|
[12] |
邹丽, 任思远, 杨光, 等. 基于改进条件邻域熵的接头疲劳寿命影响因素分析[J]. 焊接学报, 2021, 42(11): 43 − 50. doi: 10.12073/j.hjxb.20210323001
Zou Li, Ren Siyuan, Yang Guang, et al. Analysis of influencing factors on fatigue life of joints based on improved conditional neighborhood entropy[J]. Transactions of the China Welding Institution, 2021, 42(11): 43 − 50. doi: 10.12073/j.hjxb.20210323001
|
[13] |
Gao Z, Zhao W. A data-driven approach for fatigue life of water intake risers[J]. Marine Structures, 2022, 83: 103188. doi: 10.1016/j.marstruc.2022.103188
|
[14] |
Amiri N, Farrahi G H, Kashyzadeh K R, et al. Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints[J]. Journal of Manufacturing Processes, 2020, 52: 26 − 34.
|
[15] |
Lian Z, Li M, Lu W. Fatigue life prediction of aluminum alloy via knowledge-based machine learning[J]. International Journal of Fatigue, 2022, 157: 106716. doi: 10.1016/j.ijfatigue.2021.106716
|
[16] |
Gan L, Wu H, Zhong Z. Fatigue life prediction considering mean stress effect based on random forests and kernel extreme learning machine[J]. International Journal of Fatigue, 2022, 158: 106761. doi: 10.1016/j.ijfatigue.2022.106761
|
[17] |
Feng C, Su M, Xu L, et al. A novel generalization ability-enhanced approach for corrosion fatigue life prediction of marine welded structures[J]. International Journal of Fatigue, 2023, 166: 107222. doi: 10.1016/j.ijfatigue.2022.107222
|
[18] |
Feng C, Su M, Xu L, et al. Estimation of fatigue life of welded structures incorporating importance analysis of influence factors: A data-driven approach[J]. Engineering Fracture Mechanics, 2023, 281: 109103. doi: 10.1016/j.engfracmech.2023.109103
|
[19] |
岳溪朝, 冯燕, 刘健, 等. 材料基因组工程专用数据库[J]. 上海大学学报(自然科学版), 2022, 28(3): 399 − 412.
Yue Xichao, Feng Yan, Liu Jian, et al. Special database for material genome engineering[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(3): 399 − 412.
|
[20] |
Xie L, Jin X, Zhou M, et al. Cost-efficient BLE fingerprint database construction approach via multi-quadric RBF interpolation[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 1 − 15. doi: 10.1186/s13638-018-1318-8
|
[21] |
Jacob A, Mehmanparast A. Crack growth direction effects on corrosion-fatigue behaviour of offshore wind turbine steel weldments[J]. Marine Structures, 2021, 75: 102881. doi: 10.1016/j.marstruc.2020.102881
|
[22] |
Igwemezie V, Mehmanparast A, Brennan F. The role of microstructure in the corrosion-fatigue crack growth behaviour in structural steels[J]. Materials Science and Engineering:A, 2021, 803: 140470. doi: 10.1016/j.msea.2020.140470
|
[23] |
Xue S, Shen R, Chen W, et al. Corrosion fatigue failure analysis and service life prediction of high strength steel wire[J]. Engineering Failure Analysis, 2020, 110: 104440. doi: 10.1016/j.engfailanal.2020.104440
|
[24] |
Li S X, Akid R. Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis, 2013, 34: 324 − 334. doi: 10.1016/j.engfailanal.2013.08.004
|
[25] |
Murtaza G, Akid R. Empirical corrosion fatigue life prediction models of a high strength steel[J]. Engineering Fracture Mechanics, 2000, 67(5): 461 − 474. doi: 10.1016/S0013-7944(00)00057-6
|
[26] |
Gkatzogiannis S, Weinert J, Engelhardt I, et al. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components[J]. International Journal of Fatigue, 2019, 126: 90 − 102. doi: 10.1016/j.ijfatigue.2019.04.041
|
[1] | DONG Yijun, WANG Yonggang, LI Dongya, ZHU Shanshan, XU Shuhong, WANG Yao. Heat treatment tailoring of microstructure and properties of laser cladding carbide reinforced nickel based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(10): 59-68. DOI: 10.12073/j.hjxb.20231221002 |
[2] | YU Tingxiang, FENG Wei, CHEN Bo, ZHANG Qingsu, ZHOU Baojin, LIU Xin, LIU Manyu. Mechanism of heat treatment temperature on microstructure and properties in deposited metal of 1000 MPa grade high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 97-104, 112. DOI: 10.12073/j.hjxb.20231103001 |
[3] | FAN Jiawei, LI Zhuoxuan, WU Haosheng, LIU Guangyin, ZHANG Jianxiao, HUANG Jiankang. Numerical study of the effect of carbide precipitation on the mechanical properties of ENiCrFe-3 pre-edge welded dissimilar steel welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 67-73. DOI: 10.12073/j.hjxb.20220721001 |
[4] | FU Lichao, ZHAO Xin, YANG Qingxiang. Precipitation behavior of carbide in hardfacing coating containing Nb[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 39-43. |
[5] | SU Yunhai, MA Dahai, QIN Hao, LIU Zhengjun. Formation mechanism of Cr7C3 hard phase under magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 63-66. |
[6] | TANG Wenbo, GUO Yungang, ZHANG Yawei, WANG Hongrui. Microstructures and wear resistance of hardfacing alloy containing internally produced carbide particulates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 73-76. |
[7] | LEI Yucheng, GU Kangjia, ZHU Qiang, CHEN Xizhang, JU Xin, CHANG Fenghua. Hardness and microstructure of China low activation martensitic steel fusion welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 9-12. |
[8] | ZHANG Tianhong, DU Yi, ZHANG Junxu. Effect of carbon and nitrogen on microstructure and properties of austenite weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 81-84,88. |
[9] | LU Fenggui, LU Binfeng, TANG Xinghua, YAO Shun. Chromium Carbide in situ synthesis by vacuum electron beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 34-36. |
[10] | ZHANG Yuan-bin, Ren deng-yi. Study on Carbides in Surfacing Layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 38-40. |
1. |
曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 .
![]() | |
2. |
李冬毓,孙万田. 稳定化热处理对厚壁TP347钢管焊接接头组织和性能的影响. 焊接. 2023(05): 45-50 .
![]() |