Advanced Search
FENG Chao, ZHAO Lei, XU Lianyong, HAN Yongdian. Investigation on fatigue life prediction approach of welded joints via integrated data-driven method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 8-13, 51. DOI: 10.12073/j.hjxb.20221116002
Citation: FENG Chao, ZHAO Lei, XU Lianyong, HAN Yongdian. Investigation on fatigue life prediction approach of welded joints via integrated data-driven method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 8-13, 51. DOI: 10.12073/j.hjxb.20221116002

Investigation on fatigue life prediction approach of welded joints via integrated data-driven method

More Information
  • Received Date: November 15, 2022
  • Available Online: August 18, 2023
  • In this study, a novel intelligent fatigue life prediction approach was established via the integrated data-driven method (Borderline-Synthetic Minority Over-Sampling Technique, eXtreme Gradient Boosting, Deep Convolutional Neural Network). Among them, the Borderline-Synthetic Minority Over-Sampling Technique was used to enhance the data quality of the fatigue performance dataset, the eXtreme Gradient Boosting was used to realize the weight analysis of the influencing factors of fatigue life, and the Deep Convolutional Neural Network was used as the model framework to understand the multiple nonlinear relationships between fatigue life and its influencing factors. Based on the analysis of different technology combinations, it was found that weight analysis and data augmentation were both beneficial for improving prediction accuracy, with the former having better results than the latter. And by comparing with other novel prediction models, the accuracy and stability of the proposed method were verified.

  • [1]
    徐连勇. 长寿命高可靠性焊接结构[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(1): 1 − 10.

    Xu Lianyong. Long life and high reliability welded structure[J]. Journal of Tianjin University (Science and Technology), 2022, 55(1): 1 − 10.
    [2]
    轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26 − 51. doi: 10.3901/JME.2021.06.026

    Xuan Fuzhen, Zhu Mingliang, Wang Guobiao. Review and prospect of 100 year research on structural fatigue[J]. Chinese Journal of Mechanical Engineering, 2021, 57(6): 26 − 51. doi: 10.3901/JME.2021.06.026
    [3]
    Su M, Xu L, Peng C, et al. Fatigue short crack growth, model and EBSD characterization of marine steel welding joint[J]. International Journal of Fatigue, 2022, 156: 106689. doi: 10.1016/j.ijfatigue.2021.106689
    [4]
    闫志峰, 王卓然, 王树邦, 等. AZ31镁合金双面对称搅拌摩擦焊接头疲劳性能[J]. 焊接学报, 2022, 43(6): 61 − 68. doi: 10.12073/j.hjxb.20211119001

    Yan Zhifeng, Wang Zhuoran, Wang Shubang, et al. Fatigue performance of AZ31 magnesium alloy double-sided symmetric friction stir welded joint[J]. Transactions of the China Welding Institution, 2022, 43(6): 61 − 68. doi: 10.12073/j.hjxb.20211119001
    [5]
    Fricke W. Fatigue analysis of welded joints: state of development[J]. Marine Structures, 2003, 16(3): 185 − 200. doi: 10.1016/S0951-8339(02)00075-8
    [6]
    Xu B, Xiong J, Yu C, et al. Improved elastocaloric effect of NiTi shape memory alloys via microstructure engineering: A phase field simulation[J]. International Journal of Mechanical Sciences, 2022, 222: 107256. doi: 10.1016/j.ijmecsci.2022.107256
    [7]
    范强, 徐辉, 柴俊凯. 海洋平台疲劳寿命预测的优化分析[J]. 石油工程建设, 2022, 48(3): 8 − 13. doi: 10.3969/j.issn.1001-2206.2022.03.002

    Fan Qiang, Xu Hui, Chai Junkai. Optimization analysis of fatigue life prediction of offshore platforms[J]. Petroleum Engineering Construction, 2022, 48(3): 8 − 13. doi: 10.3969/j.issn.1001-2206.2022.03.002
    [8]
    蒋广龙, 高月华, 刘其鹏. 考虑极限应力相对量度的Manson-Coffin改进模型[J]. 大连交通大学学报, 2022, 43(3): 41 − 45.

    Jiang Guanglong, Gao Yuehua, Liu Qipeng. Improved Manson Coffin model considering relative measurement of ultimate stress[J]. Journal of Dalian Jiaotong University, 2022, 43(3): 41 − 45.
    [9]
    Kang G, Luo H. Review on fatigue life prediction models of welded joint[J]. Acta Mechanica Sinica, 2020, 36(3): 701 − 726. doi: 10.1007/s10409-020-00957-0
    [10]
    Spear A D, Kalidindi S R, Meredig B, et al. Data-driven materials investigations: the next frontier in understanding and predicting fatigue behavior[J]. JOM, 2018, 70(7): 1143 − 1146. doi: 10.1007/s11837-018-2894-0
    [11]
    Heng J, Zheng K, Feng X, et al. Machine Learning-Assisted probabilistic fatigue evaluation of Rib-to-Deck joints in orthotropic steel decks[J]. Engineering Structures, 2022, 265: 114496. doi: 10.1016/j.engstruct.2022.114496
    [12]
    邹丽, 任思远, 杨光, 等. 基于改进条件邻域熵的接头疲劳寿命影响因素分析[J]. 焊接学报, 2021, 42(11): 43 − 50. doi: 10.12073/j.hjxb.20210323001

    Zou Li, Ren Siyuan, Yang Guang, et al. Analysis of influencing factors on fatigue life of joints based on improved conditional neighborhood entropy[J]. Transactions of the China Welding Institution, 2021, 42(11): 43 − 50. doi: 10.12073/j.hjxb.20210323001
    [13]
    Gao Z, Zhao W. A data-driven approach for fatigue life of water intake risers[J]. Marine Structures, 2022, 83: 103188. doi: 10.1016/j.marstruc.2022.103188
    [14]
    Amiri N, Farrahi G H, Kashyzadeh K R, et al. Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints[J]. Journal of Manufacturing Processes, 2020, 52: 26 − 34.
    [15]
    Lian Z, Li M, Lu W. Fatigue life prediction of aluminum alloy via knowledge-based machine learning[J]. International Journal of Fatigue, 2022, 157: 106716. doi: 10.1016/j.ijfatigue.2021.106716
    [16]
    Gan L, Wu H, Zhong Z. Fatigue life prediction considering mean stress effect based on random forests and kernel extreme learning machine[J]. International Journal of Fatigue, 2022, 158: 106761. doi: 10.1016/j.ijfatigue.2022.106761
    [17]
    Feng C, Su M, Xu L, et al. A novel generalization ability-enhanced approach for corrosion fatigue life prediction of marine welded structures[J]. International Journal of Fatigue, 2023, 166: 107222. doi: 10.1016/j.ijfatigue.2022.107222
    [18]
    Feng C, Su M, Xu L, et al. Estimation of fatigue life of welded structures incorporating importance analysis of influence factors: A data-driven approach[J]. Engineering Fracture Mechanics, 2023, 281: 109103. doi: 10.1016/j.engfracmech.2023.109103
    [19]
    岳溪朝, 冯燕, 刘健, 等. 材料基因组工程专用数据库[J]. 上海大学学报(自然科学版), 2022, 28(3): 399 − 412.

    Yue Xichao, Feng Yan, Liu Jian, et al. Special database for material genome engineering[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(3): 399 − 412.
    [20]
    Xie L, Jin X, Zhou M, et al. Cost-efficient BLE fingerprint database construction approach via multi-quadric RBF interpolation[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 1 − 15. doi: 10.1186/s13638-018-1318-8
    [21]
    Jacob A, Mehmanparast A. Crack growth direction effects on corrosion-fatigue behaviour of offshore wind turbine steel weldments[J]. Marine Structures, 2021, 75: 102881. doi: 10.1016/j.marstruc.2020.102881
    [22]
    Igwemezie V, Mehmanparast A, Brennan F. The role of microstructure in the corrosion-fatigue crack growth behaviour in structural steels[J]. Materials Science and Engineering:A, 2021, 803: 140470. doi: 10.1016/j.msea.2020.140470
    [23]
    Xue S, Shen R, Chen W, et al. Corrosion fatigue failure analysis and service life prediction of high strength steel wire[J]. Engineering Failure Analysis, 2020, 110: 104440. doi: 10.1016/j.engfailanal.2020.104440
    [24]
    Li S X, Akid R. Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis, 2013, 34: 324 − 334. doi: 10.1016/j.engfailanal.2013.08.004
    [25]
    Murtaza G, Akid R. Empirical corrosion fatigue life prediction models of a high strength steel[J]. Engineering Fracture Mechanics, 2000, 67(5): 461 − 474. doi: 10.1016/S0013-7944(00)00057-6
    [26]
    Gkatzogiannis S, Weinert J, Engelhardt I, et al. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components[J]. International Journal of Fatigue, 2019, 126: 90 − 102. doi: 10.1016/j.ijfatigue.2019.04.041
  • Related Articles

    [1]GONG Lihua, GUO Weimin. Effect of UV light on the corrosion behaviors of aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 106-112. DOI: 10.12073/j.hjxb.20210827002
    [2]FU Yuming, ZHAO Huayang, DU Wenlian, LI Yanfang, ZHENG Lijuan. Fatigue life and strengthening research of welded joints with hole defects by using electromagnetic heating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 31-34. DOI: 10.12073/j.hjxb.20170407
    [3]DENG Xin, WANG Chao, WEI Yanhong. Prediction system of mechanical properties of welded joints based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 109-112.
    [4]WU Qi, QIU Huiqing, ZHENG Yang. Structural stress solution of welded joints based on shell element[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (7): 22-26.
    [5]WU Qi, QIU Huiqing, WANG Weisheng. Fatigue analysis of welded joints by method of structural stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 101-105.
    [6]WU Liangchen, WANG Dongpo, DENG Caiyan, WANG Kang. Fatigue properties of welded joints of 16Mn steel in super long life region[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 117-120.
    [7]ZHANG Min, DING Fang, XU De-sheng, CHENG Zu-hai. An engineering method of fracture criteria for welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 8-12.
    [8]YANG Xin qi, ZHANG Yian xin, HUO Li xing, ZHANG Yu feng. Research progress on fatigue assessment of welded joints by local approaches[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (3): 82-86.
    [9]WANG Wen-xian, HUO Li-xing, ZHANG Yu-feng, WANG Dong-po. Effect of Transformation Temperature on Improving the Fatigue Strength of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 15-18.
    [10]WANG Dong-po, HUO Li-xing, CAI Guo-yu, ZHANG Yu-feng. Ultrasonic Peening Equipment Used for Improring Fatigue Strength of Welded Joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (2): 32-35.

Catalog

    Article views (262) PDF downloads (72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return