Citation: | DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003 |
白易立, 王东坡, 邓彩艳, 等. 超声冲击强度对焊接接头疲劳寿命的影响[J]. 焊接学报, 2019, 40(12): 149 − 153.
Bai Yili, Wang Dongpo, Deng Caiyan, et al. Effect of ultrasonic impact strength on fatigue life of welded joint[J]. Transactions of the China Welding Institution, 2019, 40(12): 149 − 153.
|
邓彩艳, 牛亚如, 龚宝明, 等. 承载超声冲击下焊接接头疲劳性能的改善[J]. 焊接学报, 2017, 38(7): 72 − 76.
Deng Caiyan, Niu Yaru, Gong Baoming, et al. Improvement of fatigue properties of welded joints under ultrasonic impact loading[J]. Transactions of the China Welding Institution, 2017, 38(7): 72 − 76.
|
Shibanuma K, Ueda K, Ito H, et al. Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth[J]. Materials & Design, 2018, 139: 269 − 282.
|
Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97 − 103. doi: 10.1115/1.3157599
|
Brückner-Foit A, Huang X. Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading[J]. International Journal of Fatigue, 2006, 28(9): 963 − 971. doi: 10.1016/j.ijfatigue.2005.08.011
|
Jezernik N, Kramberger J, Lassen T, et al. Numerical modelling of fatigue crack initiation and growth of martensitic steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(11): 714 − 723.
|
Mlikota M, Schmauder S, BožićŽ. Calculation of the Wöhler (SN) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289 − 297. doi: 10.1016/j.ijfatigue.2018.03.018
|
Mlikota M, Staib S, Schmauder S, et al. Numerical deter- mination of Paris law constants for carbon steel using a two-scale model[C]//Journal of Physics: Conference Series. IOP Publishing, 2017, 843(1): 012042.
|
殷良伟. Ti_2AlNb焊接接头微区高温本构关系及疲劳裂纹萌生模型研究[D]. 南京: 南京航空航天大学, 2018.
Yin Liangwei. Research on constitutive relationship and fatigue crack initiation of Ti2AlNb alloy welded joints at elevated temperature[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
刘亚波. 45钢疲劳裂纹萌生与扩展的数值模拟[D]. 秦皇岛: 燕山大学, 2014.
Liu Yabo. Numerical simulation of metal component’s fatigue crack initiation and propagation[D]. Qin Huangdao: Yanshan University, 2000.
|
陈小进. TC4-DT钛合金电子束焊接接头裂纹萌生数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2017.
Chen Xiaojin. Simulation and in-stiu test of TC4-DT alloy electron beam welded joints fatigue micro-crack initiation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
Vinogradov A, Hashimoto S, Miura S. Crack initiation and propagation in〈110〉oriented copper single crystals under cyclic deformation[J]. Acta Metall. Mater, 1995, 43: 675 − 680. doi: 10.1016/0956-7151(94)00270-R
|
Newman Jr J C, Phillips E P, Swain M H. Fatigue-life prediction methodology using small-crack theory[J]. International Journal of fatigue, 1999, 21(2): 109 − 119. doi: 10.1016/S0142-1123(98)00058-9
|
[1] | SUI Chufan, LIU Zhengjun, AI Xingyu. Effect of ultrasonic vibration on welding hot crack of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 122-128. DOI: 10.12073/j.hjxb.20220106002 |
[2] | LIU Tao, GAO Song, XIAO Guangchun, WU Chenghao, SHI Lei, SUN Zhiping. Process optimization on friction stir lap welding of 6061-T6 aluminum alloy/Q235 steel with ultrasonic vibration[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 69-75. DOI: 10.12073/j.hjxb.20220101007 |
[3] | PEI Longji, HU Zhiyue, QU Long, JIANG Shuying, ZHANG Junli. Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 90-96. DOI: 10.12073/j.hjxb.20210427002 |
[4] | LEI Yucheng, CUI Zhanxiang, LU Guangyao, YAO Yiqiang, ZHANG Xuening. Effect of arc-ultrasonic on the microstructure and properties of 6061 aluminum alloy joint with MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 33-38. DOI: 10.12073/j.hjxb.20191006002 |
[5] | ZHANG Dan, XIA Peiyun, CUI Fan, YIN Yuhuan. Micro friction stir welding technology of 6061-T6 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 102-106. DOI: 10.12073/j.hjxb.2019400080 |
[6] | YAN Fuyu, LI Yang, LUO Zhen, ZHAO Yujin, CUI Xuetuan, LUO Tong. Effect of joint type on mechanical properties of three-sheet 6061 aluminum alloy resistance spot welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 81-84. |
[7] | WANG Xijing, DENG Xiangbin, WANG Lei. Parametric study on friction stir welding of Q235 steel with 6082 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 99-102. |
[8] | CHONG Yuliang, KONG Liang, SONG Zheng, WANG Min. Properties of resistance spot weld between high strength steel and aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 71-74,78. |
[9] | QIU Ranfeng, YU Hua, SHI Hongxin, ZHAN Keke, TU Yimin, SATONAKA Shinobu. Interfacial characteristics of welded joint between aluminum alloy and stainless steel by resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 37-40. |
[10] | ZHANG Weihua, SUN Daqian, LI Zhidong, LIU Dongyang, LI Dandan. Microstructure and mechanical property of dissimilar material resistance spot welded joint of steel and aluminum alloy with electrode plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 85-88. |
1. |
陆煜,赵健,石磊,白玉,王英,曾浩林. K418B与1Cr11Ni2W2MoV电子束焊缝组织及性能分析. 兵器材料科学与工程. 2024(05): 45-51 .
![]() | |
2. |
蔡平,殷雄,余明俊,漆启华,姚道金. 结合响应面和改进粒子群对厂房烟尘浓度控制. 重庆理工大学学报(自然科学). 2024(12): 224-231 .
![]() | |
3. |
张楷,高辉,林渊浩,邵明启. 基于RSM和NSGA-Ⅱ算法的同轴送粉氩弧熔覆工艺参数分析. 焊接学报. 2024(12): 106-116 .
![]() | |
4. |
解天虎. 焊接工艺在机械维修中的应用及优化措施. 造纸装备及材料. 2023(06): 116-118 .
![]() |