Advanced Search
BAO Yefeng, REN Qiang, ZHANG Zhixi, YANG Ke, JIANG Yongfeng. Study of intergranular corrosion resistance of overlay by Electroslag cladding with austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 65-68,79.
Citation: BAO Yefeng, REN Qiang, ZHANG Zhixi, YANG Ke, JIANG Yongfeng. Study of intergranular corrosion resistance of overlay by Electroslag cladding with austenitic stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 65-68,79.

Study of intergranular corrosion resistance of overlay by Electroslag cladding with austenitic stainless steel

More Information
  • Received Date: July 31, 2014
  • The welding joints were obtained through surfacing the Cr-Ni stainless steel on Q235 by ESW (electroslag strip cladding) and SAW (submerged arc welding). The influence of these two methods and welding speeds on microstructures and intergranular corrosion resistance of overlays was researched. The microstructures of overlays cladded by ESW and SAW are austenitic combinated with δ-ferrite. With the increasing of welding speed of ESW, the δ-ferrite content of overlays increases from 6.8% to 20.4%; While the δ-ferrite content of SAW surfacing mental is the highest in all samples, reaching 23.6%. EPR (Electrochemical Potentiodynamic Reactivation) test shows that the re-activating rate (Ra) of overlay cladded by ESW with the welding speed v=8m/h is the lowest, just only 3.22%, which indicates the best performance of anti-intergranular corrosion. Changing welding speed or method will rapidly increase Ra, resulting in a decrease of the resistance of intergranular corrosion. The results of 10% oxalic acid electrolytic etching test are the same as EPR.
  • 单际国, 董祖珏, 徐滨士. 我国堆焊技术的发展及其在基础工业中的应用现状[J]. 中国表面工程, 2002, 57(4): 19-22. Shan Jiguo, Dong Zujue, Xu Binshi. Development and Application of Welding Technology on The Basis of Industry[J]. China Surface Engineering, 2002, 57(4): 19-22.
    [美]A. 约翰·塞德赖克斯. 不锈钢的腐蚀[M]. 吴 剑, 译. 北京: 机械工业出版社, 1986.
    Byy K OH , Devletain J H. Electroslag Strip Cladding of Stainless Steel with Metal Powder[J]. welding journal, 1992: 37-44.
    Aydogdu G H, Aydinol M K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behavior of AISI 316L type stainless steel[J]. Corrosion Science, 2006(48): 3565-3583.
    金维松, 郎宇平, 荣 凡, 等. EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究[J]. 中国腐蚀与防护学报, 2007, 27(1): 55-59. Jin Weisong, Lang Yuping, Rong Fan, et al. Research of EPR on the susceptibility to intergranular attack of austenitic stainless steel[J]. Journal of Chinese Society of Corrosion and Protection. 2007, 27(1): 55-59.
    王正憔, 吴幼林. 不锈钢[M]. 北京: 化学工业出版社, 1991.
    Sarafianos N. Structure morphology effect of Ti and Nb stabilized austenitic stainless steel welds on corrosion properties[J]. Journal of Materials Science, 1992(27): 226-232.
    Lippold J C, Savage W F. Solidification of austenitic stainless steel weldments, 1: a proposed mechanism[J]. Welding Journal, 1979, 58(12): 362s-374s.
    张志玺, 包晔峰, 杨 可, 等. 焊接速度对18-8不锈钢堆焊层组织形态的影响[J]. 电焊机, 2012, 42(5): 43-46. Zhang Zhixi, Bao Yefeng, Yang Ke, et al. Influence of welding speed on morphology of 18-8 stainless steel[J]. Electric Welding Machine, 2012, 42(5): 43-46.
    李亚江, 陈芙蓉, 栗卓新, 等. 焊接冶金学[M]. 北京: 机械工业出版社, 2010.
  • Related Articles

    [1]QIAO Ruilin, LONG Weimin, QIN Jian, LIAO Zhiqian, FAN Xigang, WEI Yongqiang. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 68-74. DOI: 10.12073/j.hjxb.20230520001
    [2]ZHANG Yuelai, PENG Zhangzhu, CHANG Maochun, HU Long, PAN Guochang, XU Bo. Numerical simulation of residual stress in complex aluminum alloy welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001
    [3]DU Baoshuai, MA Xuezhou, ZHANG Zhongwen, XU Guoxiang. Numerical simulation of residual stress in multipass weld joint of ultrafine-grained Q460 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 42-46.
    [4]CHEN Jian, LÜ Lin, FANG Kai. Numerical simulation of ultrasonic impact treatment on 6061 aluminum alloy welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (12): 88-92.
    [5]LI Yajuan, LI Wushen. Numerical simulation on welding residual stresses of X80 pipeline girth weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (6): 97-100,104.
    [6]YAN Dongyang, WU Aiping, JIAO Haojun, NING Liqing, ZHOU Liangang. Numerical simulation of residual stress and deformation on laser welding of "grooved-coat" structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 13-16.
    [7]ZHOU Guangtao, LIU Xuesong, YANG Jianguo, YAN Dejun, FANG Hongyuan. Numerical simulation of welding residual stress for longitudinal straight weld seam for aluminum alloy thin-wall cylinder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 89-92.
    [8]LI Junmin, CHEN Furong. Numerical simulation of influence of process on stress field of electron beam brazing radiator[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 69-72.
    [9]JIANG Wen-chun, GONG Jian-ming, TANG Jian-qun, CHEN Hu, TU Shan-dong. Numerical simulation of hydrogen diffusion under welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 57-60,64.
    [10]JIN Xiao-jun, HUO Li-xing, ZHANG Yu-feng, BAI Bing-ren, Li Xiao-wei, Cao Jun. Three dimensional finite element numerical simulation of residual stresses of all-position welding in duplex stainless steel pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 52-56.

Catalog

    Article views (386) PDF downloads (350) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return