Advanced Search
ZHANG Yuelai, PENG Zhangzhu, CHANG Maochun, HU Long, PAN Guochang, XU Bo. Numerical simulation of residual stress in complex aluminum alloy welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001
Citation: ZHANG Yuelai, PENG Zhangzhu, CHANG Maochun, HU Long, PAN Guochang, XU Bo. Numerical simulation of residual stress in complex aluminum alloy welded structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 91-96. DOI: 10.12073/j.hjxb.20201215001

Numerical simulation of residual stress in complex aluminum alloy welded structure

More Information
  • Received Date: December 14, 2020
  • Available Online: May 07, 2021
  • Based on SYSWELD finite element software, an efficient calculation method based on instantaneous heat source was developed to simulate the welding residual stress of complex aluminum alloy structures. Firstly, the moving heat source and instantaneous heat source were respectively used to simulate the residual stress of 6061 aluminum alloy plate surfacing welding joint and compared the results, which verified the effectiveness of the newly developed method. Subsequently, the developed efficient calculation method was used to simulate the welding transient stress and welding residual stress of 6 000 series aluminum alloy complex structure so as to analyze the causes of cracks generated in actual product manufacturing. The result shows that the high transient tensile stress is generated at this position during the welding process lead to cracking of the aluminum structure. The simulation result indicates that both solutions can improve the welding transient stress and residual stress to a certain extent, and increasing the thickness of the profile shows better improvement effect.
  • Wahid M A, Siddiquee A N, Khan Z A. Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint[J]. Marine System & Ocean Technology, 2020, 15: 70 − 80.
    孟金奎, 王苹, 马健潇, 等. 焊接残余应力对7N01铝合金疲劳裂纹扩展影响[J]. 焊接学报, 2019, 40(9): 25 − 29.

    Meng Jinkui, Wang Ping, Ma Jianxiao, et al. The effect of welding residual stress to the fatigue crack growth of 7N01 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(9): 25 − 29.
    Deng Dean, Liang Wei, Murakawa H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements[J]. Journal of Materials Processing Technology, 2006, 183(2): 219 − 225.
    林相远, 张威, 王利, 等. 6XXX系铝合金弧焊与高功率激光焊组织性能对比[J]. 有色金属加工, 2020, 49(2): 16 − 19. doi: 10.3969/j.issn.1671-6795.2020.02.005

    Lin Xiangyuan, Zhang Wei, Wang Li, et al. Comparison of microstructure and properties of 6XXX series aluminum alloy arc welding and large power laser welding[J]. Nonferrous Metals Processing, 2020, 49(2): 16 − 19. doi: 10.3969/j.issn.1671-6795.2020.02.005
    李桓, 徐光霈, 张宇辉, 等. 2219/5A06异种铝合金焊接接头组织与性能相关性[J]. 焊接学报, 2020, 41(9): 8 − 15.

    Li Heng, Xu Guangpei, Zhang Yuhui, et al. Correlation of structure and properties of 2219/5A06 dissimilar aluminum alloy welded joints[J]. Transactions of the China Welding Institution, 2020, 41(9): 8 − 15.
    董晓晶, 李桓, 杨立军, 等. 铝合金多股复合焊丝脉冲MIG焊接接头组织与性能分析[J]. 焊接学报, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289

    Dong Xiaojing, Li Huan, Yang Lijun, et al. Analysis of structure and properties of pulsed MIG welding joints of aluminum alloy multi-strand composite welding wire[J]. Transactions of the China Welding Institution, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289
    Deng Dean, Hidekazu Murakawa, Liang Wei. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 45 − 48.
    胡兴, 戴培元, 张超华, 等. 合并焊道法对SUS304不锈钢平板对接接头焊接残余应力计算精度和效率的影响[J]. 机械工程学报, 2019, 55(12): 72 − 82. doi: 10.3901/JME.2019.12.072

    Hu Xing, Dai Peiyuan, Zhang Chaohua, et al. The effect of combined weld bead method on the calculation accuracy and efficiency of welding residual stress of SUS304 stainless steel plate butt joint[J]. Journal of Mechanical Engineering, 2019, 55(12): 72 − 82. doi: 10.3901/JME.2019.12.072
    孙加民, 邓德安, 叶延洪, 等. 用瞬间热源模拟Q390高强钢厚板多层多道焊T形接头的焊接残余应力[J]. 焊接学报, 2016, 37(7): 31 − 34.

    Sun Jiamin, Deng Dean, Ye Yanhong, et al. Simulation of welding residual stress with transient heat source in Q390 high strength steel multi-pass T-joint[J]. Transactions of the China Welding Institution, 2016, 37(7): 31 − 34.
    颜祯, 谢伟伟, 尹志新. 连续碳纤维铝基复合材料横向等效热导率的模拟分析[J]. 装备制造技术, 2020(2): 21 − 23. doi: 10.3969/j.issn.1672-545X.2020.02.004

    Yan Zhen, Xie Weiwei, Yin Zhixin. Simulation analysis of transverse equivalent thermal conductivity of continuous carbon fiber aluminum matrix composite[J]. Equipment Manufacturing Technology, 2020(2): 21 − 23. doi: 10.3969/j.issn.1672-545X.2020.02.004
    牛志伟, 黄继华, 刘凯凯, 等. Al-Si-Ge-Zn钎料钎焊6061铝合金接头组织与性能分析[J]. 焊接学报, 2017, 38(9): 97 − 101.

    Niu Zhiwei, Huang Jihua, Liu Kaikai, et al. Microstructure and property of 6061 aluminum alloy brazed joint with Al-Si-Ge-Zn filler metal[J]. Transactions of the China Welding Institution, 2017, 38(9): 97 − 101.
  • Related Articles

    [1]DU Yongpeng, GUO Ning, WU Chenghao, HUANG Lu, ZHANG Xin, FENG Jicai. Study on the application of the weld reinforcement variation coefficient in underwater wet welding quality evaluation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(2): 24-27, 32. DOI: 10.12073/j.hjxb.20190917001
    [2]LI Hexi, HAN Xinle, FANG Zaojun. A visual model of welding robot based on CNN deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 154-160. DOI: 10.12073/j.hjxb.2019400060
    [3]GAO Yanfeng, WU Dong. Effects of lateral wind on the rotating arc sensing and the weld seam tracking in a horizontal welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 36-40. DOI: 10.12073/j.hjxb.2018390091
    [4]ZHANG Yanxi, GAO Xiangdong. Morphology of molten pool based on shadow during highpower laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 27-30.
    [5]GONG Yefei, LI Xinde, DAI Xianzhong, CHENG Xianggen. A weld robot off-line programming system integrated with virtual structured-light sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 17-20.
    [6]YIN Ziqiang, ZHANG Guangjun, GAO Hongming, WU Lin. Calibration approach for structured-light sensor in remanufacture based on welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 57-60.
    [7]XIAO Xinyuan, SHI Yonghua, WANG Guorong, Li Hexi. Robotic underwater weld seam tracking based on visual sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 33-36.
    [8]WANG Hong-ying, LIU Shou-yi, LIANG Xue-feng, LI Zhi-jun. Acqusition and control of welding quality signals in laser welding of Mg alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 101-103.
    [9]WANG Jun-bo, SUN Zhen-guo, CHEN Qiang, JI Meng, JIANG Li-pei, JIAO Xiang-dong, XUE Long. CCD Sensor Assisted Weld Seam Tracing Method for Spherical Tank Welding Robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (2): 31-34.
    [10]Li Yan, Shao Junbao, Wu Lin, Lin Tao. A method of robotic welding seam tracking with 3D vision information[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (2): 132-136.
  • Cited by

    Periodical cited type(5)

    1. 王振民,宋哲龙,迟鹏,廖海鹏,张芩. 类人机器人焊接技术研究现状与展望. 机电工程技术. 2025(04): 1-13 .
    2. 陈廷艳,彭一航,董碧云. 不同励磁方式下微间隙焊缝磁光图像的获取与研究. 科技视界. 2025(04): 49-52 .
    3. 王权,程豪,蒋世权. 面向智慧农业的焊接机器人可视化误差补偿系统设计. 现代农业装备. 2025(02): 81-85 .
    4. 李玉帆,原鹏飞. 基于焊接机器人的控制系统设计及研究. 自动化应用. 2025(09): 38-40+43 .
    5. 刘少意,严文荣,陈振明,乔家伟,杨高阳,张新明,王绿原,王克鸿. 机器人智能化焊接技术发展综述. 金属加工(热加工). 2025(06): 1-12 .

    Other cited types(0)

Catalog

    Article views (694) PDF downloads (76) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return