Advanced Search
JIANG Wen-chun, GONG Jian-ming, TANG Jian-qun, CHEN Hu, TU Shan-dong. Numerical simulation of hydrogen diffusion under welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 57-60,64.
Citation: JIANG Wen-chun, GONG Jian-ming, TANG Jian-qun, CHEN Hu, TU Shan-dong. Numerical simulation of hydrogen diffusion under welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (11): 57-60,64.

Numerical simulation of hydrogen diffusion under welding residual stress

More Information
  • Received Date: March 20, 2006
  • Using finite element analysis code ABAQUS, a sequential coupling calculating program on hydrogen diffusion has been developed. Using this program, the effect of as-welded residual stress on the hydrogen diffusion was numerically simulated for the welded joint of a liquefied petroleum gas spherical tank made of 16MnR steel.The hydrogen diffusion without the effect of welding residual stress was also taken into account and compared.This method provides a reference for mastering the criterion of hydrogen induced cracking of welded joint.The result shows that under the welding residual stress field, the hydrogen diffuses and accumulates toward the higher stress zone, attaining stability through a period of time.There is a low hydrogen concentration value around the heat affected zone, where the residual stress gradient and concentration gradient are formed, which can cause the hydrogen long-range diffusion to the high stress zone.
  • Related Articles

    [1]YU Jingdan, WANG Ru, WU Wenzhi, HU Zixiang, ZHANG Chulei, WANG Guoxin, YAN Yan. Reliability prediction and design optimization of BGA solder joint based on multi-fidelity surrogate model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 10-16. DOI: 10.12073/j.hjxb.20230205002
    [2]JIANG Weiqi, HUANG Haihong, LIU Yun, LI Lei, LIU Zhifeng. Prediction for emission of environmental burden in GTAW based on combined neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 77-85. DOI: 10.12073/j.hjxb.20211104002
    [3]LONG Ling, SHI Qingyu, LIU Tie, LIU Xi, SUN Zhanguo. Modeling of material flow during friction stir welding and the application for defect prediction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 84-88. DOI: 10.12073/j.hjxb.2019400017
    [4]ZHANG Yongzhi1,2, DONG Junhui1, HOU Jijun1. Predictive modeling of mechanical properties of welded joints based on generalized dynamic fuzzy RBF neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 37-40. DOI: 10.12073/j.hjxb.20150911002
    [5]ZHANG Guoli, WANG Jianye, LIU Cang. Prediction on health of welded point based on gray model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 108-110.
    [6]LI Yajuan, LI Wushen, XIE Qi. Research and prediction on cold cracking susceptibility of Nb-Mo X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (5): 105-108.
    [7]ZHOU Guangtao, LIU Xuesong, YAN Dejun, FANG Hongyuan. Prediction for welding deformation reducing by welding sequence optimization of upper plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 109-112.
    [8]DONG Zhibo, ZHAN Xiaohong, WEI Yanhong, LU Yafeng, GUO Ping, YANG Yongfu. Pre-processing software for three-dimensional simulation and prediction of weld solidification cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 21-24.
    [9]XIN Liming, ZHAO Mingyang, XU Zhigang. Misalignment production and its prediction model in tailored blank laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 89-92, 96.
    [10]DONG Zhibo, WEI Yanhong, Zhan Xiaohong, WEI Yongqiang. Optimization of mechanical properties prediction models of welded joints combined neural network with genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 69-72.

Catalog

    Article views (297) PDF downloads (101) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return