Advanced Search
QIAO Ruilin, LONG Weimin, QIN Jian, LIAO Zhiqian, FAN Xigang, WEI Yongqiang. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 68-74. DOI: 10.12073/j.hjxb.20230520001
Citation: QIAO Ruilin, LONG Weimin, QIN Jian, LIAO Zhiqian, FAN Xigang, WEI Yongqiang. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 68-74. DOI: 10.12073/j.hjxb.20230520001

Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints

More Information
  • Received Date: May 19, 2023
  • Available Online: November 08, 2023
  • Drilling sampling is the preferred method to achieve lunar soil sample collection. To address the issue of high residual stress and poor connection quality in dissimilar material brazed joints within drilling sampling tools, this paper uses ANSYS finite element software as a platform and a numerical simulation method to study the distribution of residual stress in a YG8/GH4169 brazed joint, as well as the influence of adding Cu and Mo interlayers on the residual stress in the joint. The results indicate that there is a great deal of residual stress in the brazed joint of cemented carbide/superalloy. The dangerous area of stress concentration is the vertex of the cemented carbide near the welding seam, with a maximum axial residual stress of about 1304 MPa. Adding Cu and Mo interlayers can effectively alleviate residual stress in the joint. When the thickness of the interlayers is less than 0.6 mm, Cu has a better relieving effect on residual stress in the joint. When the thickness of the interlayers is greater than 0.6 mm, Mo has a better relieving effect. When Cu and Mo are used as interlayers, the optimal thickness for relieving residual stress in the joint is around 1.0 mm. The experimental results of residual stress in dissimilar materials brazed joints are basically consistent with the numerical simulation results.

  • [1]
    Tong L J, Zhao D M, Hu M, et al. Drilling and migration characteristics of critical size lunar soil particles[J]. IOP Conference Series:Materials Science and Engineering, 2020, 926(1): 12 − 21.
    [2]
    Yin X H, Ma Q S, Cui B, et al. Current review on the research status of cemented carbide brazing: filler materials and mechanical properties[J]. Metals and Materials International, 2020, 27(9): 571 − 583.
    [3]
    陈洪, 张莹. YG8硬质合金与45钢真空钎焊的研究[J]. 热加工工艺, 2012, 41(13): 183 − 184.

    Chen Hong, Zhang Ying. Research on vacuum brazing of 45 steel and YG8 cemented carbide[J]. Hot Working Technology, 2012, 41(13): 183 − 184.
    [4]
    Zhang J, Jin L Y. Numerical simulation of residual stress in brazing joint between cemented carbide and steel[J]. Materials Science & Technology, 2005, 21(12): 1455 − 1459.
    [5]
    Zheng Z Y, Wang S H, Xu M Y, et al. Microstructures and mechanical properties of YG18 cemented carbide/40Cr steel joints vacuum brazed using Ag–Cu–Ti filler metal[J]. Vacuum, 2023(3): 111323.
    [6]
    原瑞泽, 闫献国, 陈峙, 等. 深冷处理对YG8硬质合金/42CrMo钢钎焊接头残余应力的影响[J]. 金属热处理, 2021, 46(10): 204 − 208.

    Yuan Ruize, Yan Xianguo, Chen Zhi, et al. Effect of cryogenic treatment on residual stress of YG8 cemented carbide/42CrMo steel brazed joints[J]. Heat Treatment of Metals, 2021, 46(10): 204 − 208.
    [7]
    Sui Y W, Luo H B, Lü Y, et al. Influence of brazing technology on the microstructure and properties of YG20C cemented carbide and 16Mn steel joints[J]. Welding in the World, 2016, 60(6): 1269 − 1275. doi: 10.1007/s40194-016-0374-0
    [8]
    Wang J, Xiong Q L, Wang J, et al. Microstructure and mechanical properties of YG8/IN718 alloy joints prepared by vacuum brazing[J]. Vacuum, 2019, 169: 108942.
    [9]
    Li W W, Chen B, Xiong H P, et al. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu-Cr filler alloy and a Mo interlayer[J]. Journal of Materials Science & Technology, 2019, 35(9): 8.
    [10]
    龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4.

    Long Weimin, Zhang Guanxing, Zhang Qingke, et al. In-situ synthesis of high strength Ag brazing filler metals during brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.
    [11]
    Long W M, Zhang G X, Zhang Q K. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J]. Scripta Materialia, 2016, 110: 41 − 43. doi: 10.1016/j.scriptamat.2015.07.041
    [12]
    龙伟民, 张冠星, 张青科, 等. 原位合成高强度ZnAgCu钎料研究[J]. 焊接, 2015(7): 6 − 9.

    Long Weimin, Zhang Guanxing, Zhang Qingke, et al. In-situ synthesized high strength ZnAgCu brazing filler metal[J]. Welding & Joining, 2015(7): 6 − 9.
    [13]
    李胜男, 路全彬, 都东, 等. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 217 − 221. doi: 10.11896/cldb.21120062

    Li Shengnan, Lu Quanbin, Du Dong, et al. Finite element analysis of stress field of C/C composite brazed joint[J]. Materials Reports, 2023, 37(1): 217 − 221. doi: 10.11896/cldb.21120062
    [14]
    Hao Z P, Li J N, Fan Y H, et al. Study on constitutive model and deformation mechanism in high speed cutting Inconel 718[J]. Nature Reviews Cancer, 2019, 19(2): 439 − 452.
    [15]
    Hao Z P, Ji F F, Fan Y H, et al. Failure feature and characterization of material of shear band in cutting Inconel 718[J]. Journal of Manufacturing Processes, 2019, 45: 154 − 165. doi: 10.1016/j.jmapro.2019.06.016
    [16]
    Dehghan S, Ismail M, Souri E. A thermo-mechanical finite element simulation model to analyze bushing formation and drilling tool for friction drilling of difficult-to-machine materials[J]. Journal of Manufacturing Processes, 2020, 57(9): 1004 − 1018.
    [17]
    张嘉, 龙连春, 吴奇. Inconel 718微环形零件激光增材制造残余应力数值分析[J]. 机械工程学报, 2021, 57(18): 172 − 181. doi: 10.3901/JME.2021.18.172

    Zhang Jia, Long Lianchun, Wu Qi. Simulation of residual stress of SLM additive manufactured micro-annular Inconel 718 components[J]. Journal of Mechanical Engineering, 2021, 57(18): 172 − 181. doi: 10.3901/JME.2021.18.172
    [18]
    李洪亮. 紫铜与SiO2陶瓷真空钎焊工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Li Hongliang. Research on brazing technology of copper to SiO2 ceramic[D]. Harbin: Harbin Institute of Technology, 2014.
    [19]
    Pan R, Kovacevic S, Lin T, et al. Control of residual stresses in 2Si-B-3C-N and Nb joints by the Ag-Cu-Ti plus Mo composite interlayer[J]. Materials & Design, 2016, 99: 193 − 200.
    [20]
    吴铭方, 周小丽, 马骋, 等. Ti(C, N)/40Cr钎焊接头残余应力数值计算[J]. 焊接学报, 2006, 27(12): 65 − 68. doi: 10.3321/j.issn:0253-360X.2006.12.017

    Wu Mingfang, Zhou Xiaoli, Ma Cheng, et al. Numerical calculations of residual stress in Ti(C, N)/40C brazed joint[J]. Transactions of the China Welding Institution, 2006, 27(12): 65 − 68. doi: 10.3321/j.issn:0253-360X.2006.12.017
    [21]
    王天鹏. Ag-Cu-Ti + TiNp钎焊Si3N4陶瓷/42CrMo钢组织性能和数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    Wang Tianpeng. Microstructure and mechanical properties and numerical simulation of the Si3N4 ceramic/42CrMo steel brazed with Ag-Cu-Ti + TiNp composite filler[D].Harbin: Harbin Institute of Technology, 2012.
    [22]
    徐振钦, 杨宗辉. 异种材料焊接接头热应力缓冲中间层的研究现状[J]. 机械工程材料, 2013, 37(12): 6 − 10.

    Xu Zhenqin, Yang Zonghui. Research actuality of thermal stress relaxation interlayer for dissimilar materials joints[J]. Materials for Mechanical Engineering, 2013, 37(12): 6 − 10.
  • Cited by

    Periodical cited type(3)

    1. 王红娜,纠永涛,张雷,路全彬,丁宗业,夏月庆. ZrH_2对AgCuTi钎料润湿性及PCBN/YG8异质接头性能的影响. 精密成形工程. 2025(03): 41-48 .
    2. 龙伟民,乔瑞林,秦建,宋晓国,李鹏远,樊喜刚,刘代军. 异质材料钎焊技术与应用研究进展. 焊接学报. 2025(04): 1-21 . 本站查看
    3. 刘伟,朱永梅,孙傲. AH36钢焊接接头动态应力应变特性分析. 焊接学报. 2024(07): 50-58 . 本站查看

    Other cited types(2)

Catalog

    Article views (171) PDF downloads (46) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return