Advanced Search
ZHANG Yi, LIU Xixia, SHI Rukun, WANG Xia, YANG Xiong. Numerical simulation of deep-penetration laser welding based on level-set method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 29-34.
Citation: ZHANG Yi, LIU Xixia, SHI Rukun, WANG Xia, YANG Xiong. Numerical simulation of deep-penetration laser welding based on level-set method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 29-34.

Numerical simulation of deep-penetration laser welding based on level-set method

More Information
  • Received Date: June 09, 2013
  • A three-dimensional continuous mixed-state model was established. The feature that molten pool is higher than the welding surface during laser welding was obtained by using level set method in the model, as well as the simulation of the mixed state of solid-liquid in the solid-liquid zone and the tracking the movement of the vapor-liquid interface. The results demonstrated that, the wall of the keyhole and the layer of the molten pool with asymmetry were thin on the front wall of the keyhole and was thick on the rear wall. Also, the temperature gradient was large on the front wall of the keyhole and was small on the rear wall. The metal vapor evaporating from the keyhole wall flowed to the axis of the keyhole, and then was ejected outside the keyhole. The maximum absorption of the laser intensity occurred on the bottom of the keyhole. The maximum temperature of 3 700 K on the keyhole wall was higher than the vaporization temperature over 567 K. The depth of the keyhole increased quickly during the initial stage of the formation. However, the changing rate of the keyhole depth gradually decreased with the increase of the depth of the keyhole.
  • Stanley Osher, James A, Sethian. Fronts propagation with curvature-dependent speed:algorithms based on hamilton-jacobi formulations[J]. Jurnal of Computational Physics, 1988, 79(1):12-49.
    Ki Hyungson, Mazumder J, Mohanty P S. Modeling of laser kehole welding:part l. mathematical modeling, numerical methodology, role of recoil pressure, multiple rerlections and free surface evolution[J]. Metallurgical and Materials transactions, 2002, 33(6):1817-1830.
    Dasgupta A K, Mazumder J. Physics of zinc vaporization and plasma absorption during CO2 laser welding[J]. Journal of Appled Physics, 2007, 102(5):063108-053108-15.
    庞盛永, 陈立亮, 殷亚军, 等. 激光焊接瞬态小孔与运动熔池行为模拟[J]. 焊接学报, 2010, 31(2):71-74. Pang Shengyong, Chen Liliang, Yin Yajun, et al. Simulations of transient keyhole and dynamic melt pool behaviors during laser welding[J]. Transactions of the China Welding Institution, 2010, 31(2):71-74.
    王小杰, 武传松, 陈茂爱. 等离子弧定点焊熔池穿孔过程的数值分析[J]. 金属学报, 2010, 46(8):984-990. Wang Xiaojie, Wu Chuansong, Chen Maoai, et al. Numerical simulation of weld pool keyhole process in stationary plasma arc welding[J]. Acta Metallurgica Sinica, 2010, 46(8):984-990.
    王智勇, 初新俊, 左铁钏, 等. 激光深熔焊接抛物面小孔模型[J]. 焊接学报, 2006, 27(2):1-5. Wang Zhiyong, Chu Xinjun, Zuo Tiechuan, et al. Numerical simulation and experiment study on keyhole in laser penetration welding[J]. Transactions of the China Welding Institution, 2006, 27(2):1-5.
    张屹, 陈根余, 李力钧. 基于实测小孔的激光深熔焊接三维传热模型[J]. 焊接学报, 2008, 29(2):27-30. Zhang Yi, Chen Genyu, Li Lijun. 3D heat transfer model in laserdeep penetration welding based on real keyhole[J]. Transactions of the China Welding Institution, 2008, 29(2):27-30.
    Kumar N, Dash S, Tyagl A, et al. Study of dimensionless quantities to analyse front and rear wall of keyhole formed during laser beam welding[J]. Sadhana, 2013, 38:235-246.
    Bennon W, Incropera F. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. model formulation[J]. International Journal of Heat and Mass Transfer, 1987, 30(10):2161-2170.
    Kelly R, Dreyfus R W. On the effect of knudsen-layer formation on studies of vaporization, sputtering and desorption[J]. Surface Science 1988, 198(1-2):263-276.
    张曦, 张嘉锋, 何世平, 等. 热毛细对流温度场全息干涉检测研究[J]. 实验力学, 2000, 15(2):152-156. Zhang Xi, Zhang Jiafeng, He Shiping, et al. Detection of thermocapillary convection temperature field by using holographic interferometry[J]. Journal of Experimental Mechanics, 2000, 15(2):152-156.
    Acherjee B, Kuar A S, Mitra S, et al. Modeling of laser transmission contour welding process using FEA and DoE[J]. Optics & Laser Technology, 2012, 44:1281-1289.
    Zhang Y, Shi R K, Li L J. Determination of energy coupling to material in laser welding by a novel sandwich method[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7):1701-1710.
    史如坤. 基于Level-Set方法的小孔和熔池动态形成过程模拟研究[D]. 长沙:湖南大学, 2013.
    Piekarska W, Kubiak M. Three-dimensional model for numerical analysis of thermal phenomena in laser-arc hybrid welding process[J]. International Journal of Heat and Mass Transfer, 2011, 54(23):4966-4974.
    Hu Y W, He X L, Yu G, et al. Heat and mass transfer in laser dissimilar welding of stainless steel and nickel[J]. Applied Surface Science, 2012, 258:5914-5922.
  • Related Articles

    [1]PENG Jin, XU Hongqiao, WANG Xingxing, LI Shuai, LI Liqun, LONG Weimin, CHEN Benle. Study on the dynamic behavior of molten pool in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(11): 1-7. DOI: 10.12073/j.hjxb.20221220001
    [2]HUANG Ruisheng, ZOU Jipeng, GONG Jianfeng, YANG Yicheng, LIANG Xiaomei. Dynamic behavior of laser scanning welding pool and plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 11-16. DOI: 10.12073/j.hjxb.20191016004
    [3]WANG Jiajie, JIAO Yong, YU Jiuhao, WANG Guoxing, XU Jianping. Numerical simulations of temperature field and keyhole evolution for electron beam welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 87-90.
    [4]HUANG Yong, ZHANG Zhiguo, WANG Yanlei. Nitrogen distribution in molten pool of gas pool coupled activating TIG welding with rapid cooling method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 31-34.
    [5]GAO Xiangdong, ZHANG Yong, YOU Deyong, Katayama Seiji. Analysis of molten pool configuration and welding stability during high-power fiber laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 13-16.
    [6]ZHU Liang, JIN Jiang, MIAO Hongli, Li Yuanbo. Base metal melting and molten pool forming in ultra-narrow gap with constricted arc by flux strips[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 9-12.
    [7]WANG Ke-hong, JIA Yang, QIAN Feng, SHEN Ying-ji. Molten pool image gathering and processing of aluminum alloy twin-wire MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 53-56.
    [8]ZHOU Fang-ming, QIAN Yi-yu, JIANG Ze-dong, SHI Yi-feng. The effect of welding parameters on molten pool of TIG helium-arc small-gap butt welding of tantalum sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 43-46.
    [9]WANG Hong, SHI Yao-wu, GONG Shui-li. Study on heat transfer of melt pool in laser keyhole welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (11): 47-50.
    [10]Feng Lei, Chen Shujun, Ding Jingzhu, Yin Shuyan. Stability of Molten Pool and Bead Formation in High speed CO2 Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 164-169.
  • Cited by

    Periodical cited type(10)

    1. 文学,汪宏辉,李熙岩,钱建康,毕思源,雷正龙. X80M钢管道全自动焊接接头裂纹尖端张开位移差异性. 焊接学报. 2024(02): 98-104+134-135 . 本站查看
    2. 肖友福,刘永贞,孙有辉,闫玉升,徐连勇,韩永典. 预充氢对SCR焊接接头应力腐蚀敏感性影响. 焊接学报. 2024(10): 19-27 . 本站查看
    3. 陈自振,李天伟,任建志,韩卫亮,范伟. 油气管道激光电弧焊工艺安全条件研究与应用. 安全、健康和环境. 2023(02): 22-27 .
    4. 夏佩云,封小松,王春明,徐程,黄珲,何建利. 激光摆动焊接工艺参数对不锈钢焊缝成形与气孔率的影响. 焊接学报. 2023(04): 39-44+131 . 本站查看
    5. 付超,刘阳,王勇,李学达,曲畅. 大壁厚X80钢焊接HAZ沿壁厚方向的低温韧性. 焊接. 2023(06): 9-17 .
    6. 王鹏宇,闫臣. 从油气管道工程建设的发展看焊接技术的进步. 焊接. 2023(06): 44-51+64 .
    7. 周斌,陈捷狮,张杨,张文帅,杨尚磊,陆皓. 激光螺旋点焊和电阻点焊DC06镀锌钢接头组织和性能. 焊接学报. 2023(06): 41-49+131-132 . 本站查看
    8. 廖宁宁,王艳淼,周永东,林敏,张弛. Q355E圆锥管激光-MAG复合焊可行性应用研究. 金属加工(热加工). 2023(08): 65-69 .
    9. 胡美娟,田野,慕进良,胡旭,宁杰,张林杰. CMT增材X80钢组织和性能与韧性调控措施. 焊接. 2022(07): 6-13 .
    10. 汪宏辉,王鹏宇. 水网地区铜衬垫外根焊全自动焊接技术适应性. 焊接. 2022(07): 60-64 .

    Other cited types(3)

Catalog

    Article views (604) PDF downloads (559) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return