Advanced Search
Feng Lei, Chen Shujun, Ding Jingzhu, Yin Shuyan. Stability of Molten Pool and Bead Formation in High speed CO2 Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 164-169.
Citation: Feng Lei, Chen Shujun, Ding Jingzhu, Yin Shuyan. Stability of Molten Pool and Bead Formation in High speed CO2 Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 164-169.

Stability of Molten Pool and Bead Formation in High speed CO2 Welding

More Information
  • Received Date: March 02, 1999
  • Revised Date: July 04, 1999
  • The theory of stability of a liquid with free surface is applied to understand the ‘humping’ phenomenon in bead formation during high speed welding. A real time image sampling system is established to verify the theoretical analysis. The result shows that, when a free droplet transfer mode is applied in high speed welding, the workpiece is heated by the arc throughout the process and thus the molten pool can not solidify in time.As a result, the molten pool is very long, which gives way to the instability of bead formareron and pinch effect of the liquid metal,so that it finally leads to the humping phenomenon. Based on the analysis and experimental result, the short circuiting transfer mode is suggested to improve the bead formation in high speed welding. During short circuiting mode, the arc extinguishes periodically, so the heat transferred into the molten pool is decreased, this helps to avoid the molten pool to be extra long and in turn avoid the instability of the liquid metal.The results of experiments indicate that with short circuiting transfer mode, sound weld can be achieved in high speed welding.
  • Related Articles

    [1]WU Xiangyang, SU Hao, SUN Yan, CHEN Ji, WU Chuanong. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 91-96. DOI: 10.12073/j.hjxb.20200708001
    [2]WANG Wei, JIN Cheng, SHI Chunyuan. Effect of mesh size on weld temperature field of double ellipsoidal power density distribution heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 39-43.
    [3]LI Ruiying, ZHAO Ming, WU Chunmei. Determination of shape parameters of double ellipsoid heat source model in numerical simulation based on SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 93-96.
    [4]LI Peilin, LU Hao. Sensitivity analysis and prediction of double ellipsoid heat source parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 89-91,95.
    [5]CHEN Zhanglan, XIONG Yunfeng. Numerical analysis on deformation of welded construction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 77-80.
    [6]LI Ruiying, ZHAO Ming, ZHOU Hongyan. Finite element analysis on 3-D molten pool geometry for GTAW based on SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 41-44.
    [7]YANG Jianguo, CHEN Xuhui, ZHANG Xueqiu. Numerical modeling of new alterable heat source based on high energy welding beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 25-28.
    [8]LIU Wang-lan, HU Sheng-sun, MA Li. Numerical simulation of fluid flow field in plasma arc welding with 3-D static conical heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 33-36.
    [9]LEI Yong-ping, HAN Feng-juan, Xia Zhi-dong, FENG Ji-cai. Numerical analysis of residual stress in ceramics/metal brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 33-36,41.
    [10]WANG Yu, ZHAO Hai yan, WU Su, ZHANG Jian qiang. Shape parameter determination of double ellipsoid heat source model in numerical simulation of high energy beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 67-70.

Catalog

    Article views (335) PDF downloads (64) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return