Citation: | XIA Peiyun, FENG Xiaosong, WANG Chunming, XU Cheng, HUANG Hui, HE Jianli. Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 39-44. DOI: 10.12073/j.hjxb.20220511003 |
Li Junzhao, Wen Kai, Sun Qingjie, et al. The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel[J]. China Welding, 2022, 31(4): 37 − 47.
|
董功杰, 王晓隽, 陈聪, 等. 激光焊接在白车身制造中的应用和发展[J]. 汽车工艺与材料, 2021(11): 1 − 9. doi: 10.19710/J.cnki.1003-8817.20210077
Dong Gongjie, Wang Xiaojun, Chen Cong, et al. Application and development of laser welding in BIW manufacturing[J]. Automobile Technology & Material, 2021(11): 1 − 9. doi: 10.19710/J.cnki.1003-8817.20210077
|
包钢, 彭云, 陈武柱, 等. 超细晶粒钢光束摆动激光焊接的研究[J]. 应用激光, 2002(2): 203 − 205,208.
Bao Gang, Peng Yun, Chen Wuzhu, et al. Study on laser welding of ultra-fine grained steel with weaving beam[J]. Applied Laser, 2002(2): 203 − 205,208.
|
宋凡, 潘攀, 陈晓江, 等. 大熔深激光焊气孔抑制技术[J]. 火箭推进, 2019, 45(6): 84 − 89.
Song Fan, Pan Pan, Chen Xiaojiang, et al. Porosity suppression technology for large-depth laser welding[J]. Journal of Rocket Propulsion, 2019, 45(6): 84 − 89.
|
陈树青. 304不锈钢中厚板激光焊接工艺规律及机理研究[D]. 广州: 广东工业大学, 2019.
Chen Shuqing. Study on the process and mechanism of laser welding of 304 stainless steel plate[D]. Guangzhou: Guangdong University of Technology, 2019.
|
Matsunawa A, Kim J D, Seto N, et al. Dynamics of keyhole and molten pool in laser welding[J]. Journal of Laser Applications, 1998, 10(6): 247 − 254. doi: 10.2351/1.521858
|
赵琳, 塚本进, 荒金吾郎, 等. 10 kW光纤激光焊接缺陷的形成[J]. 焊接学报, 2015, 36(7): 55 − 58.
Zhao Lin, Tsukamoto S, Arakane G, et al. Formation of defects in 10 kW fiber laser welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 55 − 58.
|
Kaplan A F H, Wiklund G. Advance weldinganalysis methods applied to heavy section welding with a 15 kW fiber laser[J]. Welding in the World, 2009, 53: 283 − 288.
|
Powell J, Ilar T, Frostevarg J, et al. Weld root instabilities in fiber laser welding[J]. Journal of Laser Applications, 2015, 27(S2): S29008.
|
Bachmann M, Avilov V, Gumenyuk A. et al Experimental and numerical investigation of an electromagnetic weld pool support for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214: 578 − 591. doi: 10.1016/j.jmatprotec.2013.11.013
|
Rubben K, Mohrbacher H, Leirman E, et al. Advantages of using an oscillating laser beam for the production of tailored blanks[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1997, 3097: 228 − 241.
|
赵琳, 张旭东, 陈武柱, 等. 光束摆动法减小激光焊接气孔倾向[J]. 焊接学报, 2004, 25(1): 29 − 32,34. doi: 10.3321/j.issn:0253-360X.2004.01.008
Zhao Lin, Zhang Xudong, Chen Wuzhu, et al. Repression of porosity with beam weaving laser welding[J]. Transactions of the China Welding Institution, 2004, 25(1): 29 − 32,34. doi: 10.3321/j.issn:0253-360X.2004.01.008
|
Won-Ik C, Villads S, Peer W. Numerical study of the effect of the oscillation frequency in buttonhole welding[J]. Journal of Materials Processing Technology, 2018, 261: 202 − 212. doi: 10.1016/j.jmatprotec.2018.05.024
|
李泽宇, 徐连勇, 郝康达, 等. MAG和激光扫描-电弧复合焊X80钢接头组织和性能[J]. 焊接学报, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002
Li Zeyu, Xu Lianyong, Hao Kangda, et al. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. Transactions of the China Welding Institution, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002
|
陈根余, 王彬, 钟沛新, 等. 2060铝锂合金扫描填丝焊接工艺[J]. 焊接学报, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002
Chen Genyu, Wang Bin, Zhong Peixin, et al. Laser scanning welding of 2060 Al-Li alloy with filler wire[J]. Transactions of the China Welding Institution, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002
|
Lei W, Ming G, Chen Z, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials & Design, 2016, 108.: 707 − 717.
|
Ke Wenchao, Bu Xianzheng, Oliveira J P, et al. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy[J]. Optics & Laser Technology, 2021, 133(1): 106540.
|
Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012
|
Katayama S, Mizutani M, Matsunawa A. Development of porosity prevention procedures during laser welding[J]. Proceedings of SPIE−The International Society for Optical Engineering, 2003, 4831: 281 − 288.
|
Li S, Chen G, Katayama S, et al. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding[J]. Applied Surface Science, 2014, 303(1): 481 − 488.
|
Ilar T, Eriksson I, Powell J, et al. Root humping in laser welding – an investigation based on high speed imaging[J]. Physics Procedia, 2012, 39: 27 − 32. doi: 10.1016/j.phpro.2012.10.010
|
Seto N, Katayama S, Matsunawa A. Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel[J]. Welding International, 2002, 16: 451 − 460. doi: 10.1080/09507110209549558
|
[1] | WU Xiangyang, SU Hao, SUN Yan, CHEN Ji, WU Chuanong. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 91-96. DOI: 10.12073/j.hjxb.20200708001 |
[2] | WANG Wei, JIN Cheng, SHI Chunyuan. Effect of mesh size on weld temperature field of double ellipsoidal power density distribution heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 39-43. |
[3] | LI Ruiying, ZHAO Ming, WU Chunmei. Determination of shape parameters of double ellipsoid heat source model in numerical simulation based on SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 93-96. |
[4] | LI Peilin, LU Hao. Sensitivity analysis and prediction of double ellipsoid heat source parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 89-91,95. |
[5] | CHEN Zhanglan, XIONG Yunfeng. Numerical analysis on deformation of welded construction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 77-80. |
[6] | LI Ruiying, ZHAO Ming, ZHOU Hongyan. Finite element analysis on 3-D molten pool geometry for GTAW based on SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 41-44. |
[7] | YANG Jianguo, CHEN Xuhui, ZHANG Xueqiu. Numerical modeling of new alterable heat source based on high energy welding beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 25-28. |
[8] | LIU Wang-lan, HU Sheng-sun, MA Li. Numerical simulation of fluid flow field in plasma arc welding with 3-D static conical heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 33-36. |
[9] | LEI Yong-ping, HAN Feng-juan, Xia Zhi-dong, FENG Ji-cai. Numerical analysis of residual stress in ceramics/metal brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 33-36,41. |
[10] | WANG Yu, ZHAO Hai yan, WU Su, ZHANG Jian qiang. Shape parameter determination of double ellipsoid heat source model in numerical simulation of high energy beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 67-70. |