Advanced Search
XIA Peiyun, FENG Xiaosong, WANG Chunming, XU Cheng, HUANG Hui, HE Jianli. Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 39-44. DOI: 10.12073/j.hjxb.20220511003
Citation: XIA Peiyun, FENG Xiaosong, WANG Chunming, XU Cheng, HUANG Hui, HE Jianli. Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 39-44. DOI: 10.12073/j.hjxb.20220511003

Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding

More Information
  • Received Date: May 10, 2023
  • Available Online: April 19, 2023
  • Oscillating laser beam was utilized to weld 5 mm thick 1Cr18Ni9Ti stainless steel, and the joint with good appearance and low porosity was obtained. The effects of welding speed, oscillation amplitude, oscillation frequency, and oscillation pattern on weld formation and porosity were analyzed. The main mechanism of porosity suppressing was revealed from the perspectives of keyhole, molten pool flow and bubble overflow. The research results show that appropriately higher value of oscillating amplitude and welding speed were more effective for porosity suppression. There is an optimal range of oscillating frequency to get low porosity. For 5 mm thick stainless steel, when the laser oscillation frequency is 100 − 300 Hz, lower porosity and better weld formation could be obtained. Better weld formation were obtained with the lowest weld porosity of 2.94%, using the “8” shaped oscillating laser. While the worst weld formation was obtained with higher porosity of 19.13% using linear oscillating laser.
  • Li Junzhao, Wen Kai, Sun Qingjie, et al. The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel[J]. China Welding, 2022, 31(4): 37 − 47.
    董功杰, 王晓隽, 陈聪, 等. 激光焊接在白车身制造中的应用和发展[J]. 汽车工艺与材料, 2021(11): 1 − 9. doi: 10.19710/J.cnki.1003-8817.20210077

    Dong Gongjie, Wang Xiaojun, Chen Cong, et al. Application and development of laser welding in BIW manufacturing[J]. Automobile Technology & Material, 2021(11): 1 − 9. doi: 10.19710/J.cnki.1003-8817.20210077
    包钢, 彭云, 陈武柱, 等. 超细晶粒钢光束摆动激光焊接的研究[J]. 应用激光, 2002(2): 203 − 205,208.

    Bao Gang, Peng Yun, Chen Wuzhu, et al. Study on laser welding of ultra-fine grained steel with weaving beam[J]. Applied Laser, 2002(2): 203 − 205,208.
    宋凡, 潘攀, 陈晓江, 等. 大熔深激光焊气孔抑制技术[J]. 火箭推进, 2019, 45(6): 84 − 89.

    Song Fan, Pan Pan, Chen Xiaojiang, et al. Porosity suppression technology for large-depth laser welding[J]. Journal of Rocket Propulsion, 2019, 45(6): 84 − 89.
    陈树青. 304不锈钢中厚板激光焊接工艺规律及机理研究[D]. 广州: 广东工业大学, 2019.

    Chen Shuqing. Study on the process and mechanism of laser welding of 304 stainless steel plate[D]. Guangzhou: Guangdong University of Technology, 2019.
    Matsunawa A, Kim J D, Seto N, et al. Dynamics of keyhole and molten pool in laser welding[J]. Journal of Laser Applications, 1998, 10(6): 247 − 254. doi: 10.2351/1.521858
    赵琳, 塚本进, 荒金吾郎, 等. 10 kW光纤激光焊接缺陷的形成[J]. 焊接学报, 2015, 36(7): 55 − 58.

    Zhao Lin, Tsukamoto S, Arakane G, et al. Formation of defects in 10 kW fiber laser welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 55 − 58.
    Kaplan A F H, Wiklund G. Advance weldinganalysis methods applied to heavy section welding with a 15 kW fiber laser[J]. Welding in the World, 2009, 53: 283 − 288.
    Powell J, Ilar T, Frostevarg J, et al. Weld root instabilities in fiber laser welding[J]. Journal of Laser Applications, 2015, 27(S2): S29008.
    Bachmann M, Avilov V, Gumenyuk A. et al Experimental and numerical investigation of an electromagnetic weld pool support for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214: 578 − 591. doi: 10.1016/j.jmatprotec.2013.11.013
    Rubben K, Mohrbacher H, Leirman E, et al. Advantages of using an oscillating laser beam for the production of tailored blanks[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1997, 3097: 228 − 241.
    赵琳, 张旭东, 陈武柱, 等. 光束摆动法减小激光焊接气孔倾向[J]. 焊接学报, 2004, 25(1): 29 − 32,34. doi: 10.3321/j.issn:0253-360X.2004.01.008

    Zhao Lin, Zhang Xudong, Chen Wuzhu, et al. Repression of porosity with beam weaving laser welding[J]. Transactions of the China Welding Institution, 2004, 25(1): 29 − 32,34. doi: 10.3321/j.issn:0253-360X.2004.01.008
    Won-Ik C, Villads S, Peer W. Numerical study of the effect of the oscillation frequency in buttonhole welding[J]. Journal of Materials Processing Technology, 2018, 261: 202 − 212. doi: 10.1016/j.jmatprotec.2018.05.024
    李泽宇, 徐连勇, 郝康达, 等. MAG和激光扫描-电弧复合焊X80钢接头组织和性能[J]. 焊接学报, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002

    Li Zeyu, Xu Lianyong, Hao Kangda, et al. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. Transactions of the China Welding Institution, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002
    陈根余, 王彬, 钟沛新, 等. 2060铝锂合金扫描填丝焊接工艺[J]. 焊接学报, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002

    Chen Genyu, Wang Bin, Zhong Peixin, et al. Laser scanning welding of 2060 Al-Li alloy with filler wire[J]. Transactions of the China Welding Institution, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002
    Lei W, Ming G, Chen Z, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials & Design, 2016, 108.: 707 − 717.
    Ke Wenchao, Bu Xianzheng, Oliveira J P, et al. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy[J]. Optics & Laser Technology, 2021, 133(1): 106540.
    Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012
    Katayama S, Mizutani M, Matsunawa A. Development of porosity prevention procedures during laser welding[J]. Proceedings of SPIE−The International Society for Optical Engineering, 2003, 4831: 281 − 288.
    Li S, Chen G, Katayama S, et al. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding[J]. Applied Surface Science, 2014, 303(1): 481 − 488.
    Ilar T, Eriksson I, Powell J, et al. Root humping in laser welding – an investigation based on high speed imaging[J]. Physics Procedia, 2012, 39: 27 − 32. doi: 10.1016/j.phpro.2012.10.010
    Seto N, Katayama S, Matsunawa A. Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel[J]. Welding International, 2002, 16: 451 − 460. doi: 10.1080/09507110209549558
  • Related Articles

    [1]WU Xiangyang, SU Hao, SUN Yan, CHEN Ji, WU Chuanong. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 91-96. DOI: 10.12073/j.hjxb.20200708001
    [2]WANG Wei, JIN Cheng, SHI Chunyuan. Effect of mesh size on weld temperature field of double ellipsoidal power density distribution heat source model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 39-43.
    [3]LI Ruiying, ZHAO Ming, WU Chunmei. Determination of shape parameters of double ellipsoid heat source model in numerical simulation based on SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 93-96.
    [4]LI Peilin, LU Hao. Sensitivity analysis and prediction of double ellipsoid heat source parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 89-91,95.
    [5]CHEN Zhanglan, XIONG Yunfeng. Numerical analysis on deformation of welded construction[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 77-80.
    [6]LI Ruiying, ZHAO Ming, ZHOU Hongyan. Finite element analysis on 3-D molten pool geometry for GTAW based on SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (4): 41-44.
    [7]YANG Jianguo, CHEN Xuhui, ZHANG Xueqiu. Numerical modeling of new alterable heat source based on high energy welding beam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 25-28.
    [8]LIU Wang-lan, HU Sheng-sun, MA Li. Numerical simulation of fluid flow field in plasma arc welding with 3-D static conical heat source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 33-36.
    [9]LEI Yong-ping, HAN Feng-juan, Xia Zhi-dong, FENG Ji-cai. Numerical analysis of residual stress in ceramics/metal brazed joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 33-36,41.
    [10]WANG Yu, ZHAO Hai yan, WU Su, ZHANG Jian qiang. Shape parameter determination of double ellipsoid heat source model in numerical simulation of high energy beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 67-70.

Catalog

    Article views (285) PDF downloads (90) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return