Citation: | LIU Chengcai, MA Licui, HE Jingshan. Numerical simulation of aluminum alloy electron beam weld reinforcement based on thermal field analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 111-114. |
范 玲. 平板对接接头电子束焊接残余应力研究[D]. 南京: 南京理工大学, 2008.
|
Bach F W, Szelagowski A, Versemann R, et al. Non vacuum electron beam welding of light sheet metals and steel sheets[J]. Welding in the World, 2003, 47(34): 3-4.
|
Elmer J W, Giedt W H, Egar T W. The transition from shallow to deep penetration during electron beam welding[J]. Welding Research, 1990, 76(5): 167-176.
|
吴庆生. 高强铝合金电子束焊接焊缝成形质量研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.
|
汪兴均, 黄文荣, 魏齐龙, 等. 电子束焊接5A06铝合金接头Mg元素蒸发烧损行为分析[J]. 焊接学报, 2006, 27(11): 61-64. Wang Xingjun, Huang Wenrong, Wei Qilong, et al. Evaporation loss of Mg element in 5A06 aluminium alloy electron beam welding[J]. Transactions of the China Welding Institution, 2006, 27(11): 61-64.
|
陈芙蓉, 霍立兴, 张玉凤, 等. BT20钛合金电子束焊接残余应力三维有限元数值模拟[J]. 焊接学报, 2004, 25(1): 61-64. Chen Furong, Huo Lixing, Zhang Yufeng, et al. Finite element calculation of residual stresses on electron beam welded BT20plates[J]. Transactions of the China Welding Institution, 2004, 25(1): 61-64.
|
付 玮, 黄国刚, 杨新华, 等. 焊缝形貌对电子束焊接残余应力分布的影响[J]. 焊接学报, 2011, 32(6): 53-60. Fu Wei, Huang Guogang, Yang Xinhua, et al. Effects of weld profile on electron beam welding residual stress distribution[J]. Transactions of the China Welding Institution, 2011, 32(6): 53-60.
|
张承甫, 肖理明, 刘瑞祥, 等. 二元合金单向凝固从胞状晶向树枝晶过渡的判据[J]. 金属学报, 1986, 22(4): 194-195. Zhang Chengfu, Xiao Liming, Liu Ruixiang, et al. A criterion of cell-dendrite transition in unidirectional solidification of binary alloys[J]. Acta Metallurgica Sinica, 1986, 22(4): 194-195.
|
[1] | SUN Zhenbang, HAN Yongquan, DU Maohua. Numerical prediction of residual stress field in LB-VPPA hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 6-10,22. DOI: 10.12073/j.hjxb.2018390085 |
[2] | ZHANG Min, ZHOU Yulan, XUE Qin, LI Jihong. Numerical simulation of solidification process of Ti-45Al alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 6-10. DOI: 10.12073/j.hjxb.2018390058 |
[3] | LIU Chengcai, ZHOU Afang, HE Jingshan. Prediction of shrinkage defects in 2219 Al alloy electron beam overlaying welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 75-78. |
[4] | ZHANG Min, XU Aiyan, WANG Qiang, LI Lulu. Numerical simulation of CET transformation in solidification of Fe-C alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 5-8,54. |
[5] | ZHANG Min, WANG Qiang, LI Jihong, LI Lin, ZHI Jinhua, LUO Hailong. Microstructure numerical simulation of weld pool in rapid solidification[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 1-4,28. |
[6] | DONG Zhibo, MA Rui, WANG Yong, ZHAN Xiaohong, WEI Yanhong. Post-data treatment design of software package for three dimensional simulation and prediction of weld solidification cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 17-20. |
[7] | DONG Zhibo, ZHAN Xiaohong, WEI Yanhong, LU Yafeng, GUO Ping, YANG Yongfu. Pre-processing software for three-dimensional simulation and prediction of weld solidification cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 21-24. |
[8] | Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243. |
[9] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
[10] | Dong Piming, Gu Fuming, Gao Jinqiang, Wang Erde, Tian Xitang. Numerical Analysis for Effect of Longitudinal Shrinkage of PerpendicularIntersection Weld on Flange Plane[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 132-138. |