Advanced Search
LIU Chengcai, MA Licui, HE Jingshan. Numerical simulation of aluminum alloy electron beam weld reinforcement based on thermal field analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 111-114.
Citation: LIU Chengcai, MA Licui, HE Jingshan. Numerical simulation of aluminum alloy electron beam weld reinforcement based on thermal field analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 111-114.

Numerical simulation of aluminum alloy electron beam weld reinforcement based on thermal field analysis

More Information
  • Received Date: June 18, 2014
  • A criterion program for weld reinforcement that combined critical solid fraction and Niyama criterion was developed based on solidification shrinkage and feeding theory in molten pool. It was adopted to numerically investigate the formation of weld reinforcement of 20 mm thick non-penetrated 2219 high strength aluminum alloy electron beam weld, and the results was experimentally verified. It was found that a large number of loose interspaces that formed upon solidification distributed in the upper-middle part of weld seam, which promoted the formation of reinforcement. The simulated reinforcement and volume expansion ratio errors were 11% and 23.67%, respectively. Therefore, The proposed criterion program in this paper can be used to reasonably predict the reinforcement.
  • 范 玲. 平板对接接头电子束焊接残余应力研究[D]. 南京: 南京理工大学, 2008.
    Bach F W, Szelagowski A, Versemann R, et al. Non vacuum electron beam welding of light sheet metals and steel sheets[J]. Welding in the World, 2003, 47(34): 3-4.
    Elmer J W, Giedt W H, Egar T W. The transition from shallow to deep penetration during electron beam welding[J]. Welding Research, 1990, 76(5): 167-176.
    吴庆生. 高强铝合金电子束焊接焊缝成形质量研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.
    汪兴均, 黄文荣, 魏齐龙, 等. 电子束焊接5A06铝合金接头Mg元素蒸发烧损行为分析[J]. 焊接学报, 2006, 27(11): 61-64. Wang Xingjun, Huang Wenrong, Wei Qilong, et al. Evaporation loss of Mg element in 5A06 aluminium alloy electron beam welding[J]. Transactions of the China Welding Institution, 2006, 27(11): 61-64.
    陈芙蓉, 霍立兴, 张玉凤, 等. BT20钛合金电子束焊接残余应力三维有限元数值模拟[J]. 焊接学报, 2004, 25(1): 61-64. Chen Furong, Huo Lixing, Zhang Yufeng, et al. Finite element calculation of residual stresses on electron beam welded BT20plates[J]. Transactions of the China Welding Institution, 2004, 25(1): 61-64.
    付 玮, 黄国刚, 杨新华, 等. 焊缝形貌对电子束焊接残余应力分布的影响[J]. 焊接学报, 2011, 32(6): 53-60. Fu Wei, Huang Guogang, Yang Xinhua, et al. Effects of weld profile on electron beam welding residual stress distribution[J]. Transactions of the China Welding Institution, 2011, 32(6): 53-60.
    张承甫, 肖理明, 刘瑞祥, 等. 二元合金单向凝固从胞状晶向树枝晶过渡的判据[J]. 金属学报, 1986, 22(4): 194-195. Zhang Chengfu, Xiao Liming, Liu Ruixiang, et al. A criterion of cell-dendrite transition in unidirectional solidification of binary alloys[J]. Acta Metallurgica Sinica, 1986, 22(4): 194-195.
  • Related Articles

    [1]SUN Zhenbang, HAN Yongquan, DU Maohua. Numerical prediction of residual stress field in LB-VPPA hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 6-10,22. DOI: 10.12073/j.hjxb.2018390085
    [2]ZHANG Min, ZHOU Yulan, XUE Qin, LI Jihong. Numerical simulation of solidification process of Ti-45Al alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 6-10. DOI: 10.12073/j.hjxb.2018390058
    [3]LIU Chengcai, ZHOU Afang, HE Jingshan. Prediction of shrinkage defects in 2219 Al alloy electron beam overlaying welds[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 75-78.
    [4]ZHANG Min, XU Aiyan, WANG Qiang, LI Lulu. Numerical simulation of CET transformation in solidification of Fe-C alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 5-8,54.
    [5]ZHANG Min, WANG Qiang, LI Jihong, LI Lin, ZHI Jinhua, LUO Hailong. Microstructure numerical simulation of weld pool in rapid solidification[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 1-4,28.
    [6]DONG Zhibo, MA Rui, WANG Yong, ZHAN Xiaohong, WEI Yanhong. Post-data treatment design of software package for three dimensional simulation and prediction of weld solidification cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (3): 17-20.
    [7]DONG Zhibo, ZHAN Xiaohong, WEI Yanhong, LU Yafeng, GUO Ping, YANG Yongfu. Pre-processing software for three-dimensional simulation and prediction of weld solidification cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (8): 21-24.
    [8]Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243.
    [9]Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204.
    [10]Dong Piming, Gu Fuming, Gao Jinqiang, Wang Erde, Tian Xitang. Numerical Analysis for Effect of Longitudinal Shrinkage of PerpendicularIntersection Weld on Flange Plane[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (2): 132-138.

Catalog

    Article views (317) PDF downloads (186) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return