Citation: | ZHANG Min, ZHOU Yulan, XUE Qin, LI Jihong. Numerical simulation of solidification process of Ti-45Al alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 6-10. DOI: 10.12073/j.hjxb.2018390058 |
闫蕴琪, 王文生, 张振祺, 等. Ti-45Al-8.5Nb-W-Mo-Y合金的组织转变[J]. 材料科学与工艺, 2002, 10(2): 117-120.Yan Yunqi, Wang Wensheng, Zhang Zhenqi,et al. Microstructure evolution of the Ti-45Al-8.5Nb-W-Mo-Y alloy[J]. Materials Science and Technology, 2002, 10(2): 117-120.[2] Arenas M F, Acoff V L. The effect of postweld heat treatment on gas tungsten arc welded gamma titanium aluminide[J]. Scripta Materialia, 2002, 46(3): 241-246.[3] 张 敏, 汪 强, 李继红, 等. 焊接熔池快速凝固过程的微观组织演化数值模拟[J]. 焊接学报, 2013, 34(7): 1-4.Zhang Min, Wang Qiang, Li Jihong,et al. Numerical simulation of the microstructure evolution during rapid solidification process of weld pool[J]. Transactions of the China Welding Institution, 2013, 34(7): 1-4.[4] 黄安国, 余圣甫, 李志远. 焊缝金属凝固组织元胞自动机模拟[J]. 焊接学报, 2008, 29(4): 45-59.Huang Anguo, Yu Shengfu, Li Zhiyuan. Simulation on weld metal solidifying microstructure with cellular automaton[J]. Transactions of the China Welding Institution, 2008, 29(4): 45-59.[5] 马 瑞, 董志波, 魏艳红. 镍基合金焊缝凝固组织演变过程模拟和仿真[J]. 焊接学报, 2010, 31(7): 43-46.Ma Rui, Dong Zhibo, Wei Yanhong. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. Transactions of the China Welding Institution, 2010, 31(7): 43-46.[6] 程 锦, 许庆彦, 张 虎, 等. 基于CA方法的Ti- 45Al合金定向凝固过程微观组织模拟[J]. 铸造, 2010, 59(5): 903-907.Chen Jin, Xu Qingyan, Zhang Hu,et al. Numerical simulation of directional solidification microstructure of Ti-45Al alloy based on CA method[J]. Foundry, 2010, 59(5): 903-907.[7] 刘东戎. TiAl合金锭凝固组织形成的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2006.[8] 王狂飞, 郭景杰, 米国发, 等. Ti-45at.%Al合金定向凝固过程中显微组织演化的计算机模拟[J]. 物理学报, 2008, 57(5): 3048-3058.Wang Kuangfei, Guo Jingjie, Mi Guofa,et al. Numerical simulation of microstructure evolution during directional solidification of Ti-45at.% Al alloy[J]. Acta Physica Sinica, 2008, 57(5): 3048-3058.[9] 陈家权, 肖顺湖, 杨新彦, 等. 焊接过程数值模拟热源模型的研究进展[J]. 装备制造技术, 2005(3): 10-13.Chen Jiaquan, Xiao Shunhu, Yang Xinyan,et al. The development of heat source models for numerical simulation of welding processes[J]. Equipment Manufacturing Technology, 2005(3): 10-13.[10] Rappaz M, Gandin C A, Desbiolles J L,et al. Prediction of grain structures in various solidification processes[J]. Metallurgical & Materials Transactions A, 1996, 27(3): 695-705.[11] 陈 晋. 基于元胞自动机方法的凝固过程微观组织数值模拟[D]. 南京: 东南大学, 2005.
|
[1] | CHEN Xinghui, ZHANG Hongshen. Process parameters optimization of 5083 aluminum alloy FSW joint based on principal component analysis and grey correlation analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 62-69. DOI: 10.12073/j.hjxb.20220623001 |
[2] | LI Guowei, LIANG Yahong, CHEN Furong, HAN Yongquan. Welding parameters optimization and mechanical properties analysis of PVPPA welded high-strength aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 86-92. DOI: 10.12073/j.hjxb.2019400268 |
[3] | ZENG Kai, HE Xiaocong, XING Baoying. Effect of the degree of rivet opening on the rigidity of the interlock in self-piercing riveting joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 143-147. DOI: 10.12073/j.hjxb.2019400169 |
[4] | ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Parameters optimization of small scale spot welding for titanium alloy via Taguchi experiment and grey relational analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 101-104. DOI: 10.12073/j.hjxb.2018390132 |
[5] | ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Research on process parameters optimization of small scale resistance spot welding via regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 79-83. DOI: 10.12073/j.hjxb.2018390100 |
[6] | REN Weibin1,2, DONG Shiyun2, XU Binshi2, ZHOU Jinyu1, WANG Yujiang2. Design and implementation of laser refabrication forming closed-loop controlling for compressor blade[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059 |
[7] | WU Bintao, MIAO Yugang, HAN Duanfeng, ZHOU Yue. Analysis of single supply AC twin-electrode GTAW process mechanism of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 55-58. |
[8] | Cui Kun, Dai Ming, Wu lin, Sun Lunqiang. Autonomous Path Planning for Arc Welding Robot with Redundant Degree of Freedom[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (3): 64-70. |
[9] | Xu Jida, Cui Daming, Ge Dezhen. AUTOMATIC WELDING MACHINE WITH FOUR DEGREES OF FREEDOM FOR WELDING NOZZLES INTO VESSELS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 162-168. |
[10] | Pan Jiluan, Zhang Renhao, Ou Zhiming, Wu Zhiqiang. CLOSED LOOP SYSTEM FOR CONTROLLING PULSED MIG WELDING ARC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1985, (2): 91-98. |
1. |
孟祥超,孙有平,何江美,周勇,谢尚恒. ZL114A和6061异种铝合金激光焊接工艺及接头显微组织和力学性能研究. 矿冶工程. 2023(03): 160-164 .
![]() | |
2. |
彭进,王星星,倪增磊,张占哲,李俐群. 焊丝熔化方式对激光焊接过程的影响. 焊接学报. 2020(02): 64-67+100 .
![]() | |
3. |
路林,刘玥扬,矫全宇. 汽车用6系铝合金及其焊接方法综述. 焊接技术. 2020(06): 1-4 .
![]() | |
4. |
孙力,王成业. 基于脉冲激光的建筑材料缺陷无损检测方法. 激光杂志. 2019(09): 69-72 .
![]() | |
5. |
成健,黄易,杨新龙,李帅,汪于涛,刘顿. 动力电池用铝合金准连续脉冲激光焊接特性研究. 应用激光. 2018(06): 953-958 .
![]() |