Advanced Search
ZHANG Min, ZHOU Yulan, XUE Qin, LI Jihong. Numerical simulation of solidification process of Ti-45Al alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 6-10. DOI: 10.12073/j.hjxb.2018390058
Citation: ZHANG Min, ZHOU Yulan, XUE Qin, LI Jihong. Numerical simulation of solidification process of Ti-45Al alloy weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 6-10. DOI: 10.12073/j.hjxb.2018390058

Numerical simulation of solidification process of Ti-45Al alloy weld pool

More Information
  • Received Date: June 26, 2017
  • The macro-micro model of molten pool solidification structures, which combined cellular automaton method and finite difference method, was developed and used to simulate the dendrite growth morphology as well as the solute concentration distribution during the solidification process of Ti-45Al alloy molten pool. And then the simulation results were validated by experiment. The effect of welding heat input, internal nucleation density and surface heat transfer coefficient on dendritic growth and morphology were discussed. The results indicated that the microstructures of molten pool were mainly composed of columnar and dendrite crystals. The higher heat input and lower surface heat transfer coefficient were beneficial to the growth of columnar crystals, while the larger the internal nucleation density, the more equiaxed crystals generated in the solidified molten pool. The simulation results of dendritic growth were in good agreement with that of the experimental results.
  • 闫蕴琪, 王文生, 张振祺, 等. Ti-45Al-8.5Nb-W-Mo-Y合金的组织转变[J]. 材料科学与工艺, 2002, 10(2): 117-120.Yan Yunqi, Wang Wensheng, Zhang Zhenqi,et al. Microstructure evolution of the Ti-45Al-8.5Nb-W-Mo-Y alloy[J]. Materials Science and Technology, 2002, 10(2): 117-120.[2] Arenas M F, Acoff V L. The effect of postweld heat treatment on gas tungsten arc welded gamma titanium aluminide[J]. Scripta Materialia, 2002, 46(3): 241-246.[3] 张 敏, 汪 强, 李继红, 等. 焊接熔池快速凝固过程的微观组织演化数值模拟[J]. 焊接学报, 2013, 34(7): 1-4.Zhang Min, Wang Qiang, Li Jihong,et al. Numerical simulation of the microstructure evolution during rapid solidification process of weld pool[J]. Transactions of the China Welding Institution, 2013, 34(7): 1-4.[4] 黄安国, 余圣甫, 李志远. 焊缝金属凝固组织元胞自动机模拟[J]. 焊接学报, 2008, 29(4): 45-59.Huang Anguo, Yu Shengfu, Li Zhiyuan. Simulation on weld metal solidifying microstructure with cellular automaton[J]. Transactions of the China Welding Institution, 2008, 29(4): 45-59.[5] 马 瑞, 董志波, 魏艳红. 镍基合金焊缝凝固组织演变过程模拟和仿真[J]. 焊接学报, 2010, 31(7): 43-46.Ma Rui, Dong Zhibo, Wei Yanhong. Simulation of solidification microstructure evolution in molten pool of nickel base alloy[J]. Transactions of the China Welding Institution, 2010, 31(7): 43-46.[6] 程 锦, 许庆彦, 张 虎, 等. 基于CA方法的Ti- 45Al合金定向凝固过程微观组织模拟[J]. 铸造, 2010, 59(5): 903-907.Chen Jin, Xu Qingyan, Zhang Hu,et al. Numerical simulation of directional solidification microstructure of Ti-45Al alloy based on CA method[J]. Foundry, 2010, 59(5): 903-907.[7] 刘东戎. TiAl合金锭凝固组织形成的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2006.[8] 王狂飞, 郭景杰, 米国发, 等. Ti-45at.%Al合金定向凝固过程中显微组织演化的计算机模拟[J]. 物理学报, 2008, 57(5): 3048-3058.Wang Kuangfei, Guo Jingjie, Mi Guofa,et al. Numerical simulation of microstructure evolution during directional solidification of Ti-45at.% Al alloy[J]. Acta Physica Sinica, 2008, 57(5): 3048-3058.[9] 陈家权, 肖顺湖, 杨新彦, 等. 焊接过程数值模拟热源模型的研究进展[J]. 装备制造技术, 2005(3): 10-13.Chen Jiaquan, Xiao Shunhu, Yang Xinyan,et al. The development of heat source models for numerical simulation of welding processes[J]. Equipment Manufacturing Technology, 2005(3): 10-13.[10] Rappaz M, Gandin C A, Desbiolles J L,et al. Prediction of grain structures in various solidification processes[J]. Metallurgical & Materials Transactions A, 1996, 27(3): 695-705.[11] 陈 晋. 基于元胞自动机方法的凝固过程微观组织数值模拟[D]. 南京: 东南大学, 2005.
  • Related Articles

    [1]CHEN Xinghui, ZHANG Hongshen. Process parameters optimization of 5083 aluminum alloy FSW joint based on principal component analysis and grey correlation analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 62-69. DOI: 10.12073/j.hjxb.20220623001
    [2]LI Guowei, LIANG Yahong, CHEN Furong, HAN Yongquan. Welding parameters optimization and mechanical properties analysis of PVPPA welded high-strength aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 86-92. DOI: 10.12073/j.hjxb.2019400268
    [3]ZENG Kai, HE Xiaocong, XING Baoying. Effect of the degree of rivet opening on the rigidity of the interlock in self-piercing riveting joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 143-147. DOI: 10.12073/j.hjxb.2019400169
    [4]ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Parameters optimization of small scale spot welding for titanium alloy via Taguchi experiment and grey relational analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 101-104. DOI: 10.12073/j.hjxb.2018390132
    [5]ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Research on process parameters optimization of small scale resistance spot welding via regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 79-83. DOI: 10.12073/j.hjxb.2018390100
    [6]REN Weibin1,2, DONG Shiyun2, XU Binshi2, ZHOU Jinyu1, WANG Yujiang2. Design and implementation of laser refabrication forming closed-loop controlling for compressor blade[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059
    [7]WU Bintao, MIAO Yugang, HAN Duanfeng, ZHOU Yue. Analysis of single supply AC twin-electrode GTAW process mechanism of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 55-58.
    [8]Cui Kun, Dai Ming, Wu lin, Sun Lunqiang. Autonomous Path Planning for Arc Welding Robot with Redundant Degree of Freedom[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (3): 64-70.
    [9]Xu Jida, Cui Daming, Ge Dezhen. AUTOMATIC WELDING MACHINE WITH FOUR DEGREES OF FREEDOM FOR WELDING NOZZLES INTO VESSELS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 162-168.
    [10]Pan Jiluan, Zhang Renhao, Ou Zhiming, Wu Zhiqiang. CLOSED LOOP SYSTEM FOR CONTROLLING PULSED MIG WELDING ARC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1985, (2): 91-98.
  • Cited by

    Periodical cited type(5)

    1. 孟祥超,孙有平,何江美,周勇,谢尚恒. ZL114A和6061异种铝合金激光焊接工艺及接头显微组织和力学性能研究. 矿冶工程. 2023(03): 160-164 .
    2. 彭进,王星星,倪增磊,张占哲,李俐群. 焊丝熔化方式对激光焊接过程的影响. 焊接学报. 2020(02): 64-67+100 . 本站查看
    3. 路林,刘玥扬,矫全宇. 汽车用6系铝合金及其焊接方法综述. 焊接技术. 2020(06): 1-4 .
    4. 孙力,王成业. 基于脉冲激光的建筑材料缺陷无损检测方法. 激光杂志. 2019(09): 69-72 .
    5. 成健,黄易,杨新龙,李帅,汪于涛,刘顿. 动力电池用铝合金准连续脉冲激光焊接特性研究. 应用激光. 2018(06): 953-958 .

    Other cited types(7)

Catalog

    Article views (422) PDF downloads (0) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return