Advanced Search
Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243.
Citation: Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243.

Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel

More Information
  • Received Date: April 25, 1999
  • Revised Date: September 16, 1999
  • According to the characteristics of welding process, this paper divided the welding joint of a weldment into three zones:the liquid zone in the molten weld pool, the solid-liquid co-existing zone and the solid zone. In order to develop the stress-strain numerical model, the mechanical behaviors of the three zones were analyzed in detail. Moreover, Based on the solid fractions during solidification process and loading-unloading deforming curves of stainless steel SUS310, this paper also studied the effects of deformation of welding pool, the rheologic properties and solidification shrinkage on stress-strain evaluating processes. Finally, the influence of the deformation in the molten-weld pool was eliminated by element rebirth method. Furthermore, the algorithm of the thermal stress/strain for the solid metal formulated on the basis of the incremental thermo-elastoplastic constitutive theory. As a result, a numerical simulation model of stress-strain distributions for welding solidification crack was developed.
  • Related Articles

    [1]ZHANG Xiaoli, LI Yuzhen, LONG Peng, XUE Jiaxiang. Pulsed MIG welding of aluminum alloy sheet based on fuzzy self-tuning PID control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 83-87.
    [2]HUANG Jiankang, ZHANG Gang, FAN Ding, SHI Yu. Decoupling control analysis of aluminum alloy pulse MIG welding process based on dynamic fuzzy neural networks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 43-47.
    [3]LÜ Yan, TIAN Xincheng, LIANG Jun. Decoupling control design and simulation of aluminum alloy pulsed MIG welding based on dynamic PLS framework[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 17-20.
    [4]LU Lihui, SHI Yu, HUANG Jiankang, FAN Jiawei, FAN Ding. Vision sensing and control for wire extension in pulsed MIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 63-66.
    [5]HUANG Jiankang, SHI Yu, LU Lihui, ZHU Ming, FAN Ding. Weld width control of double pulsed MIG welding for aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (5): 13-16.
    [6]SHI Yu, XUE Cheng, FAN Ding, LI Jianjun. Modeling and simulation of decoupling control system of aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 9-12.
    [7]HAN Jing-hua, SHAN Ping, HU Sheng-sun, LU Ya-jing. Modeing and simulation of digital signal processor-based pulsed metal inert-gas welding digital control system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 91-94.
    [8]GUO Hai-yun, LI Huan, LIU Qiong, WANG Jiong-xiang, LIU Xin-quan, ZHAO Wei-zhen, FU Yu-wen. Effect of pulsed parameters on dynamic simulating waveform of pulsed submergedarc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 61-64.
    [9]WU Feng-shun, LU Zhong-liang, WANG Lei, HU Yan-xiang, XIE Ming-li. Application of statistical process control in submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 69-72,76.
    [10]Yin Shuyan, Gang Tie, Bu Huaquan. Microcumputer control system of synergic pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (1): 46-52.
  • Cited by

    Periodical cited type(12)

    1. 周勇,张成文,张国军,李纪运,付芳艳,王洪铎. MAG焊接技术研究进展. 热加工工艺. 2023(15): 6-12 .
    2. 徐刚,张天雷,何林基,沈艳涛,马春伟. 摆动电弧窄间隙厚板焊接工艺与熔池演变数值研究. 轻工机械. 2021(01): 40-46 .
    3. 彭广涛,张义顺,张华军,兰虎. 弧间距对T形接头全熔透横角焊缝成形的影响. 焊接技术. 2021(04): 24-28 .
    4. 莫春立,李贞尚,赵磊,常云龙. TIG焊熔池流动及温度分布的数值模拟. 沈阳航空航天大学学报. 2021(02): 28-34 .
    5. 张义顺,丛林,张华军. 中厚板立向角焊缝机器人深熔焊接工艺. 沈阳工业大学学报. 2021(06): 635-640 .
    6. 王子然,赵宝,李洪涛,李荣,王克南. U型钢机器人快速MAG焊接工艺研究. 机械制造文摘(焊接分册). 2019(02): 19-25 .
    7. 王子然,张善保,杨战利,杨义成. 间隙对GMAW立焊熔滴过渡的影响及温度场特性. 焊接学报. 2019(05): 89-94+165 . 本站查看
    8. 胥国祥,朱杰,王加友,李林,郑志强. 摇动电弧窄间隙FCAW立焊流体流动数值分析模型. 机械工程学报. 2019(18): 63-69 .
    9. 洪宇翔,汤小虎,唐碧波,芦川. 摆动电弧立焊熔池热源模型及电流波形分析. 电焊机. 2018(11): 1-6 .
    10. 袁帅,刘文吉,李亮玉,蒋晓. 考虑侧壁熔合的摆动电弧窄间隙MAG焊温度场热源模型. 焊接学报. 2018(12): 95-99+133 . 本站查看
    11. 胥国祥,潘海潮,王加友. 摇动电弧窄间隙GMAW焊温度场数值分析模型. 焊接学报. 2017(10): 55-60+131 . 本站查看
    12. 江祥胜,许燕,周建平,单雪海. 基于金属粉末支撑的堆焊成形铺粉系统研究. 机床与液压. 2017(13): 15-18+80 .

    Other cited types(14)

Catalog

    Article views (266) PDF downloads (85) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return