Advanced Search
LU Shenglin, Zhang Xianmin. Intelligent inspection of soldered joint based on artificial neuron network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 57-60.
Citation: LU Shenglin, Zhang Xianmin. Intelligent inspection of soldered joint based on artificial neuron network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (5): 57-60.

Intelligent inspection of soldered joint based on artificial neuron network

More Information
  • Received Date: January 03, 2008
  • As electronic components get smaller and the board densities become more compact, it is necessary for automatic inspection in electronic manufacturing.The automatic optical inspection(AOI) system is demanded more precise and intelligent.The traditional inspection methods require large quantity samples of all types to train the inspector, or do some complicated setting.To overcome the disadvantages, an intelligent method was proposed.Firstly, a series of features of soldered joints were defined.Then, an automatic boundary setting method based on statistic was introduced.Finally, the neural network was established to classify the soldered joints.The performance of the method was verified by the experiment.
  • Related Articles

    [1]WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
    [2]LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002
    [3]DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001
    [4]TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001
    [5]GAO Changlin, SONG Yanli, ZUO Hongzhou, ZHANG Cheng. Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001
    [6]LUO Liuxiang, XING Yanfeng. CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 79-83. DOI: 10.12073/j.hjxb.2019400104
    [7]YU Guo, YIN Yuhuan, GAO Jiashuang, GUO Lijie. Orthogonal experiment method and BP neural networks in optimization of microbeam TIG welded GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 119-123. DOI: 10.12073/j.hjxb.2018390285
    [8]ZHANG Aihua, GAO Folai, NIU Xiaoge, LUO Huan. Prediction of gray-spot area in rail flash butt welded joint based on BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 11-14.
    [9]ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.
    [10]LEI Yu cheng, LIU Wei, CHENG Xiao nong. BP Neural Network Predicting Model for Aluminium Alloy Keyhole Plasma Arc Welding in Vertical Position[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (6): 41-43.

Catalog

    Article views (315) PDF downloads (98) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return