Advanced Search
LUO Liuxiang, XING Yanfeng. CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 79-83. DOI: 10.12073/j.hjxb.2019400104
Citation: LUO Liuxiang, XING Yanfeng. CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 79-83. DOI: 10.12073/j.hjxb.2019400104

CMT spot welding deformation of sheet metal based on BP neural network and genetic algorithm

More Information
  • Received Date: November 12, 2017
  • Welding was a key link in automobile body manufacturing. The quality of welding seriously affected the quality of automobile body, so the selection of welding parameters was very important. Aiming at the quality control of thin plate welding, the advantage of BP neural network was used to solve the non-linear problem, and established the mapping model between welding deformation and process parameters. Combining with genetic algorithm, the optimization system of welding process parameters was constructed based on genetic neural network. Then the orthogonal test was designed and compared with the proposed model. The results showed that the method could effectively achieve welding deformation prediction and optimization of process parameter on CMT (cold metal transfer) spot. The reasonable parameters were given by the prediction model to guide the CMT spot welding deformation test of steel sheet and aluminium alloy sheet, and to improve the welding efficiency.
  • Cheng Fangjie, Li Huijuan, Lian Jinrui, et al. Influence of variation of welding parameters on spot welding quality[J]. Automobile Technology, 2005(4): 35 − 37
    Rodriguez N, Vazquez L, Huarte L, et al. Wire and arc additive manufacturing: a comparison between CMT and top TIG processes applied to stainless steel[J]. Welding in the World, 2018, 62(5): 1083 − 1096.
    Peng Jinning, Chen Bingsen, Zhu Ping. Intelligent design of welding procedure parameters based on neural networks[J]. Transactions of the China Welding Institution, 1998, 19(1): 19 − 23
    崔晴晴. 铝合金和镀锌钢的CMT焊接技术研究[D]. 江苏: 江苏科技大学, 2012.
    Zhang Pengxian, Li Hao, Zhang Jie. A GABP optimized algorithm for filler rate of non-heated wire[J]. Transactions of the China Welding Institution, 2012, 33(12): 77 − 80
    程方杰, 李慧娟, 廉金瑞, 等. 焊接参数变化对点焊质量的影响[J]. 汽车技术, 2005(4): 35 − 37
    Zhang Yubao, Gou Jianjun, Zhang Enhui, et al. Welding deformation prediction of SMAW based on improved genetic neural network[J]. Hot Working Technology, 2015, 44(1): 208 − 210
    彭金宁, 陈炳森, 朱 平. 焊接工艺参数的神经网络智能设计[J]. 焊接学报, 1998, 19(1): 19 − 23
    张鹏贤, 李 浩, 张 杰. 一种冷丝填充速度的GABP优化算法[J]. 焊接学报, 2012, 33(12): 77 − 80
    Chen Daliang, Li Hongliang, Gu Cansong, et al. The effect of subframe system boundary constraints on accuracy of computational modal analysis[J]. Automobile Technology, 2016(4): 27 − 30
    张玉宝, 苟建军, 张恩慧, 等. 基于改进遗传神经网络的SMAW焊接变形预测[J]. 热加工工艺, 2015, 44(1): 208 − 210
    Nie Y P, Zhang P L, Wu X, et al. Rapid prototyping of 4043 Al-alloy parts by cold metal transfer[J]. Science and Technology Welding and Joining, 2018, 23(6): 527 − 535.
    陈达亮, 李洪亮, 顾灿松, 等. 副车架系统边界约束对计算模态分析精度的影响研究[J]. 汽车技术, 2016(4): 27 − 30
    林惠乐. 基于遗传神经网络的CO2弧焊机器人工艺参数优化研究[D]. 广西: 广西大学, 2015.
    Lin W Y, Ren X Y, Zhou T T, et al. A novel robust algorithm for position and orientation detection based on cascaded deep neural network[J]. Neurocomputing, 2018, 308: 138 − 146.
  • Related Articles

    [1]FENG Yulan, WU Zhisheng, SUN Zhiyu. Numerical simulation of the influence of thickness of cladding material on stress and strain of welded joint of stainless steel composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 73-82. DOI: 10.12073/j.hjxb.20230606001
    [2]YUAN Jiaxin, SHAO Fei, BAI Linyue, XU Qian, SUN Bin, WANG Jingtao. Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(9): 81-87. DOI: 10.12073/j.hjxb.20221020002
    [3]TIAN Qichao, MA Honghao, SHEN Zhaowu, CHEN Zijun, ZHAO Kai, Zhao Yang. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(6): 22-29. DOI: 10.12073/j.hjxb.20200506002
    [4]WANG Bin, LI Sheng, ZHU Fuhui, LI Xifeng. Evaluation on interfacial defect size of diffusion bonding based on ultrasonic non-destructive testing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(8): 34-38. DOI: 10.12073/j.hjxb.20200323004
    [5]FANG Zhonghang, SHI Changgen, FENG Ke, GE Yuheng, YOU Jun. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 87-92. DOI: 10.12073/j.hjxb.2019400241
    [6]LIAO Dongbo, ZHA Wusheng, LI Wei. Microstructure of stainless steel-carbon steel composite plates produced by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 99-102.
    [7]ZHANG Bao-qi, WANG De-he, LI Xiao-jie, YANG Wen-bin. Analysis of microstructure in bond interfacial zone of 321-15CrMoR composite plate by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 108-112.
    [8]LU Ming, WANG Yao-hua, YOU Jun, CAI Li-gen. Explosive Welding Test and Performance Study on Composite Sheet of Tool-Steel with Q235 Carbon-Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 47-50.
    [9]Fan Jingyun, Wan Guoqing, Fan Jingshun. Electro-magnetic Non-destructive Testing of Friction Welding Defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 43-49.
    [10]Liu Huoxiang, Guo Rongyuan. HYDRAULIC DESTRUCTION AND FATIGUE TESTS OF CYLINDRICAL MODEL VESSEL WITH DECLIVOUS CRACKS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1981, (3): 111-122.
  • Cited by

    Periodical cited type(10)

    1. 胡超杰,杜阿龙,杨露露,杨斌. 复合材料承压结构健康监测技术研究进展. 力学季刊. 2024(03): 593-613 .
    2. 冯飞,傅彦青,常海林,李洁,曾周燏,李伟. 不锈钢复合板制备及其焊接技术研究进展. 工业建筑. 2024(12): 71-89 .
    3. 刘海春,贾涛,刘宇恒,迟大钊. 高强铝合金T形接头缺陷超声TOFD检测. 焊接. 2024(12): 67-73 .
    4. 刘爱国. 虚拟卧式压力容器焊接生产线设计. 机械制造文摘(焊接分册). 2023(03): 39-43 .
    5. 臧伟,袁雪婷,郭龙创,张杭永. 电站冷凝器用钛钢复合板结合界面均匀性研究. 压力容器. 2022(01): 34-39+68 .
    6. 吴三孩,石端虎,历长云,赵洪枫,米国发. 基于列处理的T型焊件微焦点X射线检测图像缺陷分割. 热加工工艺. 2022(07): 114-118 .
    7. 代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 . 本站查看
    8. 孙倩,陈菁,崔晓玉,范蕙萍,张罡. 钛/钢复合板显微组织及拉伸和疲劳断口分析. 兵器材料科学与工程. 2021(03): 128-132 .
    9. 韩玉改,刘宝剑,孙靖东,李二兴. 超厚爆炸复合板覆层裂纹分析. 电焊机. 2020(05): 54-56+135-136 .
    10. 魏于波. 无损检测技术在压力容器检验中的应用研究. 设备监理. 2019(12): 36-37 .

    Other cited types(2)

Catalog

    Article views (121) PDF downloads (7) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return