Advanced Search
DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001
Citation: DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001

Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network

More Information
  • Received Date: February 25, 2023
  • Available Online: January 04, 2024
  • Based on the characteristics of the process signals in the resistance spot welding process, three working conditions of different spacing, different gaps and different spacing and gaps are analyzed, and correlation analysis is introduced to extract the correlation between the process signals and the diameter of nugget. A resistance spot welding quality prediction model based on Sparrow Search Algorithm-Back Propagation Neural Network (SSA-BP) was established, and power, welding current, welding voltage and dynamic resistance are used as input features of the prediction model. The results show that the BP neural network optimized by the sparrow search algorithm outperforms the BP model on the test set with R2, MSE, RMSE and MAE of 0.95, 1.55, 1.24 and 0.90, respectively. It is also determined that there exists a mapping relationship between power, welding current, welding voltage and dynamic resistance and the diameter of the nugget, which provides a basis for the design of process parameters for welding.

  • [1]
    谢泽豪, 李建宇, 陈树海, 等. 钢/铝异种金属点焊研究进展综述[J]. 航空学报, 2022, 43(2): 43 − 57.

    Xie Zehao, Li Jianyu, Chen Shuhai, et al. Research progress in steel/Al-alloys dissimilar metals spot welding[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 43 − 57.
    [2]
    雷达, 王海林, 周彪, 等. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(S2): 465 − 468.

    Lei Da, Wang Hailin, Zhou Biao, et al. Research on resistance spot welding technology of aluminium alloy-low carbon steel dissimilar metal[J]. Materials Reports, 2020, 34(S2): 465 − 468.
    [3]
    夏裕俊, 李永兵, 楼铭, 等. 电阻点焊质量监控技术研究进展与分析[J]. 中国机械工程, 2020, 31(1): 100−125.

    Xia Yujun, Li Yongbin, Lou Ming, et al. Recent advances and analysis of quality monitoring and control technologies for RSW[J]. China Mechanical Engineering, 2020, 31(1): 100 − 125.
    [4]
    徐靖, 万晓东, 王元勋, 等. 基于电极电压信号的微电阻点焊质量监测分析[J]. 焊接学报, 2017, 38(9): 51 − 54.

    Xu Jing, Wan Xiaodong, Wang Yuanxun, et al. Electrode voltage based quality monitoring in small scale resistance spot welding[J]. Transactions of the China Welding Institution, 2017, 38(9): 51 − 54.
    [5]
    宇慧平, 元月, 韩长录, 等. 不同工艺下超强钢点焊残余应力的试验分析[J]. 焊接学报, 2016, 37(9): 35 − 38.

    Yu Huiping, Yuan Yue, Han Changlu, et al. Analysis of test about residual stress of super steel spot welding under different process[J]. Transactions of the China Welding Institution, 2016, 37(9): 35 − 38.
    [6]
    Zhao D W, Wang Y X, Liang D Z, et al. Performances of regression model and artificial neural network in monitoring welding quality based on power signal[J]. Journal of Materials Research and Technology, 2019, 9(2): 1231 − 1240.
    [7]
    Wan X, Wang Y, Zhao D. Quality evaluation in small-scale resistance spot welding by electrode voltage recognition[J]. Science and Technology of Welding and Joining, 2016, 21(5): 358 − 65. doi: 10.1080/13621718.2015.1115161
    [8]
    赵大伟, 王新阳, 王元勋. 钛合金微电阻点焊电极间电压质量检测技术[J]. 焊接学报, 2014, 35(1): 33 − 36.

    Zhao Dawei, Wang Xinyang, Wang Yuanxun. Electrode voltage quality detection technology of titanium alloy micro resistance spot welding[J]. Transactions of the China Welding Institution, 2014, 35(1): 33 − 36.
    [9]
    Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 549 − 559. doi: 10.1007/s10845-014-0891-x
    [10]
    欧阳城添, 朱东林, 邱亚娴. 融合聚类算法的改进麻雀搜索算法[J]. 计算机仿真, 2022, 39(12): 392 − 397.

    Ouyang Chengtian, Zhu Donglin, Qiu Yaxian. Improved sparrow search algorithm based on clustering algorithm[J]. Computer Simulation, 2022, 39(12): 392 − 397.
    [11]
    苏莹莹, 王升旭. 自适应混合策略麻雀搜索算法[J]. 计算机工程与应用, 2023, 59(9): 75 − 85.

    Su Yingying, Wang Shengxu. Adaptive hybrid strategy sparrow search algorithm[J]. Computer Engineering and Applications, 2023, 59(9): 75 − 85.
    [12]
    Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science& Control Engineering, 2020, 8(1): 22 − 34.
    [13]
    Gharehchopogh F S, Namazi M, Ebrahimi L, et al. Advances in sparrow search algorithm: a comprehensive survey[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 427 − 455. doi: 10.1007/s11831-022-09804-w
    [14]
    闫鹏程, 尚松行, 张超银, 等. 改进BP神经网络算法对煤矿水源的分类研究[J]. 光谱学与光谱分析, 2021, 41(7): 2288 − 2293.

    Yan Pengcheng, Shang Songxing, Zhang Chaoyin, et al. Study on classification of coal mine water source by improved BP neural network algorithm[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2288 − 2293.
    [15]
    Tang X Y, Feng D F, Li K Q, et al. An improved BPNN prediction method based on multi-strategy sparrow search algorithm[J]. Computers, Materials and Continua, 2023, 74(2): 2789 − 2802. doi: 10.32604/cmc.2023.031304
    [16]
    彭业飞, 杨露菁, 黄璜. 基于Logistic和Tent双重映射的混沌粒子群算法[J]. 数字技术与应用, 2015(12): 136 − 137.

    Peng Yefei, Yang Lujing, Huang Huang. Logistic and tent chaotic particle swarm optimization[J]. Digital Technology & Applicationn, 2015(12): 136 − 137.
  • Related Articles

    [1]GUO Lei, LI Sihao, GUO Lixia, WANG Jun, CHEN Pingping, ZHU Jiantao. Optimization of PCCP welding process parameters based on improved MULTIMOORA method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 74-79. DOI: 10.12073/j.hjxb.20211018001
    [2]GAO Changlin, SONG Yanli, ZUO Hongzhou, ZHANG Cheng. Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001
    [3]YU Guo, YIN Yuhuan, GAO Jiashuang, GUO Lijie. Orthogonal experiment method and BP neural networks in optimization of microbeam TIG welded GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 119-123. DOI: 10.12073/j.hjxb.2018390285
    [4]ZHANG Aihua, GAO Folai, NIU Xiaoge, LUO Huan. Prediction of gray-spot area in rail flash butt welded joint based on BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 11-14.
    [5]SUN Jiamin, ZHU Jiayong, XIA Linying, DENG Dean. Numerical simulation of welding residual stress and deformation induced by electro slag welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 23-27.
    [6]HE Wenxiong, XIAO Changhui, SHI Fei, ZHAO Hongyun, LI Sihao, YI Chuanpei. Reduction of welding residual stress by in-situ ultrasonic impact treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 84-87.
    [7]WANG Nengqing, TONG Yangang, DENG Dean. Effects of welding heat source parameters on residual stress and distortion in thin plate joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (12): 97-100.
    [8]ZHANG Xian, YANG Wengang, ZHONG Jiang, ZHAO Zhangfeng. Correlation between multi-welding-pass welding parameters and welding deformation to GMAW of symmetric units of membrane water-wall[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (5): 82-86.
    [9]LIU Lipeng, WANG Wei, DONG Peixin, WEI Yanhong. Mechanical properties predication system for welded joints based on neural network optimized by genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 105-108.
    [10]DONG Zhibo, WEI Yanhong, Zhan Xiaohong, WEI Yongqiang. Optimization of mechanical properties prediction models of welded joints combined neural network with genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 69-72.
  • Cited by

    Periodical cited type(3)

    1. 董会,甘少明,杜永祺,白佳鑫,程煜辰,李明,朱朝璇. 激光扫描速率对NiCr/Cr_3C_2涂层微结构与耐磨性的影响. 金属热处理. 2023(11): 282-287 .
    2. 张昆,李美求,魏轲,冯鹏云. 抗冲蚀磨损涂层制备技术及机理的研究进展. 焊接. 2022(04): 9-16 .
    3. 奚运涛,贾毛,张军,黄雪萍,乔玉龙. HVOF热喷WC-12Co和Ni60涂层在不同攻角下的固体粒子冲蚀行为. 表面技术. 2022(12): 109-115 .

    Other cited types(4)

Catalog

    Article views (156) PDF downloads (47) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return