Advanced Search
WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
Citation: WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001

Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network

More Information
  • Received Date: May 22, 2023
  • Available Online: March 08, 2024
  • To solve the selection of process parameters for multi-layer and multi-pass welding, a strategy based on GA-BP neural network is proposed to predict the weld forming and optimize welding process parameters in the multi-layer and multi-pass welding. Firstly, by analyzing welding images, a cubic spline interpolation and adaptive segmentation methods is proposed to identify the feature points in multi-layer and multi-pass welding. Then, a prediction model for the cross-sectional shape of each weld bead during the welding process is established, and an analytic method is used to predict the welding process parameters. Further combining the principles of optimizing different welding process parameters, an improved neural network is used to optimize multi-layer and multi-pass welding process parameters, the real-time model for the relationship between welding process parameters and weld formation is established. Finally, the feasibility of the multi-layer and multi-pass welding process parameter selection strategy proposed in this paper was verified through experiments. The experiment shows that this method provides effective prediction of welding process parameters for each pass in multi-layer and multi-pass welding, and the experimental results meet practical needs.

  • [1]
    胡丹, 吕波, 王静静, 等. 焊缝表面缺陷激光视觉传感 HOG-SVM 的检测方法[J]. 焊接学报, 2023, 44(1): 56 − 62.

    Hu Dan, Lü Bo, Wang Jingjing, et al. Study on HOG-SVM detection method of weld surface de fects using laser visual sensing[J]. Transactions of the China Welding Institution, 2023, 44(1): 56 − 62.
    [2]
    李志强. 不同焊接工艺参数对焊缝组织的影响[J]. 焊接技术, 2019, 48(12): 20 − 23.

    Li Zhiqiang. Effects of different welding process parameters on weld microstructure[J]. Welding Technology, 2019, 48(12): 20 − 23.
    [3]
    贾剑平, 徐坤刚, 李志刚. 改进型BP网络在优化焊接工艺参数中的应用[J]. 热加工工艺, 2008(21): 98 − 100. doi: 10.3969/j.issn.1001-3814.2008.21.029

    Jia Jianping, Xu Kungang, Li Zhigang. Application of improved neural network in optimizing welding parameter[J]. Hot Working Technology, 2008(21): 98 − 100. doi: 10.3969/j.issn.1001-3814.2008.21.029
    [4]
    张恩慧, 苟建军. 基于Matlab/GUI的SMAW焊接工艺参数优化系统[J]. 热加工工艺, 2015, 44(15): 195 − 197,200.

    Zhang Enhui, Gou Jianjun. Process parameter optimization system of SMAW based on Matlab/Gul[J]. Hot Working Technology, 2015, 44(15): 195 − 197,200.
    [5]
    Chen F F, Xiang J, Thomas D G, et al. Model-based parameter optimization for arc welding process simulation[J]. Applied Mathematical Modelling, 2020, 81(5): 386 − 400.
    [6]
    Zhang Ke, Chen Yixin, Zheng Jian, et al. Adaptive filling modeling of butt joints using genetic algorithm and neural network for laser welding with filler wire[J]. Journal of Manufacturing Processes, 2017, 30(12): 553 − 561.
    [7]
    Shanmugasundar G, Karthikeyan B, Santhosh Ponvell P, et al. Optimization of process parameters in TIG welded joints of AISI 304L-Austenitic stainless steel using taguchi’s experimental design method[J]. Materials Today: Proceedings, 2019, 16: 1188 − 1195.
    [8]
    张恒铭, 石玗, 李春凯, 等. 工艺参数对自保护药芯焊丝焊接烟尘的影响[J]. 焊接学报, 2020, 41(11): 31 − 37. doi: 10.12073/j.hjxb.20200108001

    Zhang Hengming, Shi Yu, Li Chunkai, et al. Effect of process parameters on welding fume of selfshielded flux cored wire[J]. Transactions of the China Welding Institution, 2020, 41(11): 31 − 37. doi: 10.12073/j.hjxb.20200108001
    [9]
    郭磊, 李思豪, 郭利霞, 等. 基于改进MULTIMOORA方法的PCCP焊接工艺参数优选[J]. 焊接学报, 2022, 43(3): 74 − 79. doi: 10.12073/j.hjxb.20211018001

    Guo Lei, Li Sihao, Guo Lixia, et al. Optimization of PCCP welding process parameters based on improved MULTIMOORA method[J]. Transactions of the China Welding Institution, 2022, 43(3): 74 − 79. doi: 10.12073/j.hjxb.20211018001
    [10]
    张华军, 张广军, 蔡春波, 等. 厚板弧焊机器人自定义型焊道编排策略[J]. 焊接学报, 2009, 30(3): 61 − 64. doi: 10.3321/j.issn:0253-360X.2009.03.016

    Zhang Huajun, Zhang Guangjun, Cai Chunbo, et al. Self-defining path layout strategy for thick plate arc welding robot[J]. Transactions of the China Welding Institution, 2009, 30(3): 61 − 64. doi: 10.3321/j.issn:0253-360X.2009.03.016
    [11]
    郑银湖, 宋永胜, 邓静. 基于simufact. welding的中厚板多层多道焊数值模拟分析[J]. 电子世界, 2021, 611(5): 95 − 97.

    Zheng Yinhu, Song Yongsheng, Deng Jing. Numerical simulation analysis of multi-layer and multi-pass welding of medium thick plate based on simufact welding[J]. Electronics World, 2021, 611(5): 95 − 97.
    [12]
    喻宁娜, 莫胜撼, 戴建树. 基于激光视觉传感的焊缝图像阈值分割法研究[J]. 焊接, 2015(5): 21 − 24, 69. doi: 10.3969/j.issn.1001-1382.2015.05.006

    Yu Ningna, Mo Shenghan, Dai Jianshu. Threshold segmentation methods of weld image based on laser vision[J]. Welding & Joining, 2015(5): 21 − 24, 69. doi: 10.3969/j.issn.1001-1382.2015.05.006
    [13]
    Hsieh, Hou, Andrews, et al. Cubic splines for image interpolation and digital filtering[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1978, 26(6): 508 − 517. doi: 10.1109/TASSP.1978.1163154
    [14]
    Sagi Filin, Norbor Pfeifer. Segmentation of airborne laser scanning data using a slope adaptive neighborhood[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 71 − 80.
    [15]
    周方明, 孙红辉, 宋辉, 等. CMT窄间隙多层多道焊接工艺参数对焊缝成形的影响[J]. 江苏科技大学学报(自然科学版), 2011, 25(2): 126 − 130.

    Zhou Fangming, Sun Honghui, Song Hui, et al. Effect of CMT multi-layer narrow gap welding parameters on weld formation[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2011, 25(2): 126 − 130.
    [16]
    陈振款, 何建萍, 李芳, 等. 基于BP神经网络薄板P-PAW搭接的间隙自适应工艺参数优化[J]. 材料科学与工艺, 2024, 32(1): 18 − 24.

    Chen Zhenkuan, He Jianping, Li Fang, et al. Optimization of adaptive process parameters for P-PAW lap welding gap of sheet metal based on BP neural network[J]. Materials Science and Technology, 2024, 32(1): 18 − 24.
    [17]
    徐健宁, 张华, 胡瑢华, 等. 熔焊快速成型中焊接工艺参数与焊缝几何尺寸的关系[J]. 焊接技术, 2008(4): 10 − 13. doi: 10.3969/j.issn.1002-025X.2008.04.004

    Xu Jianning, Zhang Hua, Hu Ronghua, et al. Relationship between the parameters of rapid prototying welding and welding seam sizes[J]. Welding Technology, 2008(4): 10 − 13. doi: 10.3969/j.issn.1002-025X.2008.04.004
    [18]
    Xiao Xinyuan, Shi Yonghua, Wang Guorong, et al. Study of image processing for V-shape groove and robotic weld seam tracking based on laser vision[J]. China Welding, 2008, 17(4): 68 − 73.
  • Related Articles

    [1]WANG Qun, YU Yang, QIAN Zhiqiang. Optimization of process parameters for electron beam butt welding of HR-2 hydrogen resistant steel based on response surface method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 50-57. DOI: 10.12073/j.hjxb.20220522001
    [2]TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001
    [3]YU Guo, YIN Yuhuan, GAO Jiashuang, GUO Lijie. Orthogonal experiment method and BP neural networks in optimization of microbeam TIG welded GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 119-123. DOI: 10.12073/j.hjxb.2018390285
    [4]YANG Yachao, QUAN Huimin, DENG Linfeng, ZHAO Zhenxing. Prediction method of welding machine parameters based on neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 32-36. DOI: 10.12073/j.hjxb.2018390008
    [5]ZHOU Jianping, XU Yan, CAO Jiong, YIN Yiliang, XU Yihao. High power supply optimization design based on BP neural network and genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 9-13.
    [6]WANG Dongsheng, YANG Bin, TIAN Zongjun, SHEN Lida, HUANG Yinhui. Process parameters optimization of nanostructured ZrO2-7%Y2O3 coating deposited by plasma spraying based on genetic algorithms and neural networks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (3): 10-14.
    [7]LIU Lipeng, WANG Wei, DONG Peixin, WEI Yanhong. Mechanical properties predication system for welded joints based on neural network optimized by genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 105-108.
    [8]DONG Zhibo, WEI Yanhong, Zhan Xiaohong, WEI Yongqiang. Optimization of mechanical properties prediction models of welded joints combined neural network with genetic algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 69-72.
    [9]ZHAO Xin, ZHANG Yan-song, CHEN Guan-long, ZHANG Xiao-yun. Performance prediction in spot welding of body galvanized steel sheets based on artificial neural network and its optimization[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 77-80,84.
    [10]WANG Yu, GAO Da-lu, LIAO Ming-fu, FENG Jing. A model of artificial neural network for optimizing technological parameter of friction welding of dissimilar material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (4): 33-36.
  • Cited by

    Periodical cited type(3)

    1. 董会,甘少明,杜永祺,白佳鑫,程煜辰,李明,朱朝璇. 激光扫描速率对NiCr/Cr_3C_2涂层微结构与耐磨性的影响. 金属热处理. 2023(11): 282-287 .
    2. 张昆,李美求,魏轲,冯鹏云. 抗冲蚀磨损涂层制备技术及机理的研究进展. 焊接. 2022(04): 9-16 .
    3. 奚运涛,贾毛,张军,黄雪萍,乔玉龙. HVOF热喷WC-12Co和Ni60涂层在不同攻角下的固体粒子冲蚀行为. 表面技术. 2022(12): 109-115 .

    Other cited types(4)

Catalog

    Article views (346) PDF downloads (94) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return