Advanced Search
TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001
Citation: TANG Quan, SHI Zhixin, MAO Zhiwei. Spatter analysis of rotating arc image based on multi threshold and neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 41-46. DOI: 10.12073/j.hjxb.20211219001

Spatter analysis of rotating arc image based on multi threshold and neural network

More Information
  • Received Date: December 18, 2021
  • Available Online: December 07, 2022
  • To exploring the causes and rules of rotary arc spatter, a combination method of multi threshold and BP neural network based on mask was proposed to identify welding spatter in accordance with the welding images of rotary arc flat surfacing collected by high-speed camera. The multi threshold method was used to obtain the spatter position and contour, and then the spatter was identified by establishing a BP neural network model with five characteristic values The recognition accuracy of this combined method can reach 95.76% for rotating arc spatter images with complex background. At the same time, through the phase analysis of spatter and welding wire position, the average phase of the maximum number of spatters is 241.4°, that is, about 0.14 cycle position after the end of welding wire enters the molten pool. This is mainly due to the current surge caused by the contact between the droplet at the end of welding wire and the molten pool, and the insufficient current suppression, The research results provide a basis for controlling spatter in rotating arc welding.
  • You D, Gao X, Katayama S. Monitoring of high-power laser welding using high-speed photographing and image processing[J]. Mechanical Systems and Signal Processing, 2014, 49(1/2): 39 − 52.
    刘西洋, 徐锴, 杨淼森, 等. 基于表面张力的氧化物组分及含量对焊接飞溅的影响[J]. 焊接, 2020(8): 22 − 25.

    Liu Xiyang, Xu Kai, Yang Miaosen, et al. Effect of component and content of oxide based on surface tension on welding spatter[J]. Welding & Joining, 2020(8): 22 − 25.
    张恒铭, 石玗, 李春凯, 等. 极性对细直径自保护药芯焊丝CMT下熔滴过渡及焊缝成形的影响[J]. 焊接学报, 2021, 42(8): 75 − 81. doi: 10.12073/j.hjxb.20210419001

    Zhang Hengming, Shi Yu, Li Chunkai, et al. Effect of polarity on droplet transfer and weld formation of fine diameter self shielded flux cored wire under CMT[J]. Transactions of the China Welding Institution, 2021, 42(8): 75 − 81. doi: 10.12073/j.hjxb.20210419001
    Lü Xiaoqing, Cao Biao, Zeng Min, et al. Effects of current waveform parameters during droplet transfer on spatter in high speed waveform controlled Short-circuiting GMAW[J]. China Welding, 2005, 14(2): 121 − 124.
    Kang S, Kang M, Jang Y H, et al. Droplet transfer and spatter generation in DC-AC pulse tandem gas metal arc welding[J]. Science and Technology of Welding and Joining, 2020, 25(7): 589 − 599. doi: 10.1080/13621718.2020.1786262
    孔海旺, 李科, 王金波, 等. CO2气体保护焊熔滴过渡与飞溅的研究[J]. 热加工工艺, 2017, 46(11): 235 − 237.

    Kong Haiwang, Li Ke, Wang Jinbo, et al. Study on droplet transfer and spatter in CO2 gas shielded arc welding[J]. Hot Working Technology, 2017, 46(11): 235 − 237.
    Shareef I, Martin C. Effect of process parameters on weld spatter in robotic welding[C]//Procedia Manufacturing. 48th SME North American Manufacturing Research Conference. Cincinnati, Ohio, USA, 2020, 48: 358 − 371.
    Haubold M W, Zäh M F. Real-time spatter detection in laser welding with beam oscillation[C]//Procedia CIRP. 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering. Gulf of Naples, Italy, 2019, 79: 159 − 164.
    Yang D, Li H, Liu S, et al. In situ capture of spatter signature of SLM process using maximum entropy double threshold image processing method based on genetic algorithm[J]. Optics & Laser Technology, 2020, 131(6): 106371.
    Huang Y, Hua X, Li F, et al. Spatter feature analysis in laser welding based on motion tracking method[J]. Journal of Manufacturing Processes, 2020, 55(4): 220 − 229.
    Tan Z, Fang Q, Li H, et al. Neural network based image segmentation for spatter extraction during laser-based powder bed fusion processing[J]. Optics & Laser Technology, 2020, 130(3): 106347.
    Xia X, Jiang Z, Xu P. A detection algorithm of spatter on welding plate surface based on machine vision[J]. Optoelectronics Letters, 2019, 15(1): 52 − 56. doi: 10.1007/s11801-019-8104-7
    Zhao Z, Deng L, Bai L, et al. Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis[J]. Optics & Laser Technology, 2019, 110(9): 145 − 151.
    陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013.

    Chen Ming. The principle of MATLAB neural network and the detailed explanation of examples[M]. Beijing: Tsinghua University Press, 2013.
  • Related Articles

    [1]WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
    [2]GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.
    [3]ZOU Yirong, WU Zheming, GUO Guilin, DU Dong. Image processing algorithm for weld seam recognition based on color analyzing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 37-40.
    [4]LIU Xiaogang, XIE Cunxi, ZHANG Changnian, XU Jiayuan. Acqusition and processing of seam image based on reflected arc light[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 73-76.
    [5]ZHAO Xiang-bin, LI Liang-yu, XIA Chang-liang, FU Ling-jian. Image processing of seam tracking system with laser vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 42-44,48.
    [6]LI Yuan, XU De, SHEN Yang, TAN Min. A image processing and features extraction method for structured light image of welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 25-30.
    [7]LIU Xi-wen, WANG Guo-rong, SHI Yong-hua. Image processing in welding seam tracking based on single-stripe laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 25-28,32.
    [8]LI Ming-li, LIU Zhan-min. Image processing and tracing data collection for welding groove laser detection[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 31-35.
    [9]WANG Qing-xiang, SUN Bing-da, LI Di. Image processing method for recognizing position of welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 59-63.
    [10]GU Chun-yan, ZHANG Li-bin, HU Bao-jian, LIU Chao-ying, HUANG Wei. Application of image processing automatic tracking of CO2 arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 70-72.
  • Cited by

    Periodical cited type(2)

    1. 唐泽恬,张泽敏,张启龙,杨文韬. 基于颜色信息的SIFT特征描述子. 电子制作. 2025(07): 77-80 .
    2. 石鑫雨,方虹苏,熊润莲. 基于特征匹配的多环境图像拼接系统与设计. 计算机与网络. 2025(02): 103-109 .

    Other cited types(0)

Catalog

    Article views (304) PDF downloads (72) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return